Formation of Zn–Ca phyllomanganate nanoparticles in grass roots

Bruno Lanson a,*, Matthew A. Marcus b, Sirine Fakra b, Frédéric Panfili a, Nicolas Geoffroy a, Alain Manceau a

a Mineralogy & Environments Group, Maison des Géosciences, Université Joseph Fourier – CNRS, F-38041 Grenoble Cedex 9, France
b Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Received 23 October 2007; accepted in revised form 27 February 2008; available online 17 March 2008

Abstract

It is now well established that a number of terrestrial and aquatic microorganisms have the capacity to oxidize and precipitate Mn as phyllomanganate. However, this biomineralization has never been shown to occur in plant tissues, nor has the structure of a natural Mn(IV) biooxide been characterized in detail. We show that the graminaceous plant Festuca rubra (red fescue) produces a Zn-rich phyllomanganate with constant Zn:Mn and Ca:Mn atomic ratios (0.46 and 0.38, respectively) when grown on a contaminated sediment. This new phase is so far the Zn-richest manganate known to form in nature (chalcopynate has a Zn:Mn ratio of 0.33) and has no synthetic equivalent. Visual examination of root fragments under a microscope shows black precipitates about ten to several tens of microns in size, and their imaging with backscattered and secondary electrons demonstrates that they are located in the root epidermis. In situ measurements by Mn and Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) with a micro-focused beam can be quantitatively described by a single-phase model consisting of Mn(IV) octahedral layers with 22% vacant sites capped with tetrahedral and octahedral Zn in proportions of 3:1. The layer charge deficit is also partly balanced by interlayer Mn and Ca. Diffracting crystallites have a domain radius of 33 Å in the ab plane and contain only 1.2 layers (~8.6 Å) on average. Since this biogenic Mn oxide consists mostly of isolated layers, basal 00l reflections are essentially absent despite its lamellar structure. Individual Mn layers are probably held together in the Mn–Zn precipitates by stabilizing organic molecules. Zinc biomineralization by plants likely is a defense mechanism against toxicity induced by excess concentrations of this metal in the rhizosphere.

© 2008 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

Graminaceous plants, like other so-called metal-tolerant plants, mostly sequester metals in roots to protect reproductive and photosynthetic tissues (Li et al., 2000; Simon, 2005). The ability to store metals in underground tissues is used in phytoremediation to reinstall a vegetation cover on heavily contaminated areas and limit the propagation of metals into the food chain (Smith and Bradshaw, 1992; Cunningham et al., 1995; Vangronsveld et al., 1995; Ma et al., 2003; Mench et al., 2003; Krämer, 2005). Panfili et al. (2005) showed that the grass species Festuca rubra (red fescue) and Agrostis tenuis (colonial bentgrass) accelerate the weathering of zinc sulfide when grown on contaminated dredged sediment, thus increasing Zn bioavailability in the rhizosphere. After two years of plant growth, micrometer-sized Mn–Zn black precipitates were observed at the surface of Festuca rubra roots, but not characterized (Panfili, 2004). Zinc precipitation may be a bioactive tolerance mechanism in response to metal toxicity, or a passive mineralization at the soil–root interface (Cotter-Howells et al., 1999). Clarifying this issue and determining the mineralogy and structure of this natural precipitate is important to enhance the effectiveness of using graminaceous...
plants in phytoremediation. These questions are addressed here with electron microscopy and synchrotron-based microanalytical tools, including X-ray fluorescence (μ-XRF), extended X-ray absorption fine structure (μ-EXAFS) spectroscopy and X-ray diffraction (μ-XRD) (Manceau et al., 2002a). Micro-XRD was employed to determine the nanocrystalline structure of the Mn-Zn precipitates and the nature of defects (layer stacking faults, cationic vacancies and occupancies, Mn, Zn, and Ca site configuration, stoichiometry) through modeling of their scattering properties (Villalobos et al., 2006; Drits et al., 2007). We show that the root precipitates are present in the root epidermis (the outermost layer of root cells) and consist of a poorly crystallized phyllomanganate with a constant Zn:Mn atomic ratio higher than reported so far for any natural and synthetic manganate. A structure model is proposed for this new biominal.

2. MATERIALS AND METHODS

2.1. Materials

The composition in major elements of the dredged sediment was 68.3% SiO$_2$, 6.9% CaO, 4.8% Al$_2$O$_3$, 2.4% Fe$_2$O$_3$, 0.7% P$_2$O$_5$, and 7.2% organic carbon, and the composition in a trace metals was 4700 mg kg$^{-1}$ Zn, 700 mg kg$^{-1}$ Pb, and \sim270 mg kg$^{-1}$ Mn. Seeds of F. rubra were sown in plastic pots filled with 40 kg of either the untreated sediment, the sediment amended with 3 wt.% hydroxylapatite, or the sediment amended with the untreated sediment, Zn was distributed either the Mn or the Zn K-edge to prevent the reduction of tetravalent to divalent Mn and the increase of structural disorder under the beam (Manceau et al., 2002a). X-ray fluorescence maps were taken at 10 keV incident energy, with a beam size ranging from 5 \times 5 μm to 16 \times 7 μm ($H \times V$). Fluorescence counts were collected for K, Ca, Mn, Fe and Zn with a seven-element Ge solid-state detector and a counting time of 100 ms per pixel. For μ-EXAFS measurements, the vertical beam size ranged from 5 to 7 μm. A maximum of two spectra per precipitate were taken at either the Mn or the Zn K-edge to prevent the reduction of tetravalent to divalent Mn and the increase of structural disorder under the beam (Manceau et al., 2002a). Diffraction data were collected with a CCD camera (Bruker SMART6000, SMART software) at 17 keV ($\lambda = 0.729$ Å) and exposure times of 120–240 s. At this energy, the incident flux and absorption cross-sections are low enough to make radiation damage during an exposure negligible even at room temperature. A background pattern was recorded next to each precipitate to subtract the scattering contribution from the root so as to obtain the precipitate pattern. Diffraction patterns collected on different precipitates were all statistically identical, and thus summed up to optimize data quality. Calibration of the energy and camera distance were obtained using an Al$_2$O$_3$ standard and Fit2D software (Hammersley, 1998). This software was also used to calculate the one-dimensional XRD traces from the radial integration of the two-dimensional patterns.

2.2. Methods

2.2.1. Electron microscopy

Regions of the roots rich in black precipitates were carbon-coated and examined in secondary and backscattered electron modes by high-resolution scanning electron microscopy (JEOL JSM-6320F with a field emission gun) and analyzed with energy dispersive X-ray spectroscopy (EDS, Tracor analyzer).

2.2.2. X-ray fluorescence, diffraction, and absorption spectroscopy

The Zn:Mn and Ca:Mn ratios were measured with an Eagle III μ-XRF spectrometer (Röntgenanalytik Mess-technik GmbH) equipped with a Rh anode and a 40 μm poly-capillary. The spectrometer was operated under vacuum at 20 kV and 400 μA, and fluorescence was measured for 300 s per point. Micro XRF, XRD and EXAFS data were collected on beamline 10.3.2 at the Advanced Light Source (ALS, Berkeley—Marcus et al., 2004a). Short root fragments were attached to the tips of glass capillaries and cooled down to 110–150 K (Oxford CryoSystems Cryo-Stream) to minimize radiation damage (Manceau et al., 2002a). X-ray fluorescence maps were taken at 10 keV incident energy, with a beam size ranging from 5 \times 5 μm to 16 \times 7 μm ($H \times V$). Fluorescence counts were collected for K, Ca, Mn, Fe and Zn with a seven-element Ge solid-state detector and a counting time of 100 ms per pixel. For μ-EXAFS measurements, the vertical beam size ranged from 5 to 7 μm. A maximum of two spectra per precipitate were taken at either the Mn or the Zn K-edge to prevent the reduction of tetravalent to divalent Mn and the increase of structural disorder under the beam (Manceau et al., 2002a). Diffraction data were collected with a CCD camera (Bruker SMART6000, SMART software) at 17 keV ($\lambda = 0.729$ Å) and exposure times of 120–240 s. At this energy, the incident flux and absorption cross-sections are low enough to make radiation damage during an exposure negligible even at room temperature. A background pattern was recorded next to each precipitate to subtract the scattering contribution from the root so as to obtain the precipitate pattern. Diffraction patterns collected on different precipitates were all statistically identical, and thus summed up to optimize data quality. Calibration of the energy and camera distance were obtained using an Al$_2$O$_3$ standard and Fit2D software (Hammersley, 1998). This software was also used to calculate the one-dimensional XRD traces from the radial integration of the two-dimensional patterns.

2.2.3. Data processing

The EXAFS data were analyzed according to standard procedure (Teo, 1986; Marcus et al., 2004b). The μ-XRD patterns were simulated following the trial-and-error approach developed by Drits and Tchoubar (1990), and applied previously to natural and synthetic phyllomanganates (Chukhrov et al., 1985; Manceau et al., 1997; Drits et al., 1998; Lanson et al., 2000, 2002a,b; Gaillot et al., 2003, 2005, 2007; Villalobos et al., 2006). Details on the program and fitting procedure can be found in the articles by Drits et al. (1998) and Plançon (2002). The scattering background was considered to be linear in the 0.35–0.80 Å$^{-1}$ 1/d interval (2.86–1.25 Å). The fit quality was evaluated over this interval using the conventional R_{wp} and R_{exp} values (Howard and Preston, 1989).
3. RESULTS AND INTERPRETATION

3.1. Optical and electron microscopy

Under the optical microscope, the Mn–Zn precipitates appear as black stains about ten to several tens of micrometers in size on the root surface (Fig. 1a, EA-1). They are also observed in backscattered electron microscopy (Fig. 1b) due to the presence of high-Z elements (Mn, Zn, Ca, and minor Pb), but always are hardly noticeable in secondary electron imaging mode (Fig. 1c). This suggests that the precipitates are engulfed in the root epidermis (Cotter-Howells et al., 1999) and do not coat the root surface as iron and manganese plaques do (Otte et al., 1989; St-Cyr and Campbell, 1996). No differences were observed among precipitates from plants grown in the untreated and mineral amended sediments. This result, together with the compartmentation of the precipitates inside the roots, suggests a biological origin. This interpretation is supported also by the absence of Zn-rich phyllomanganates in the surrounding soil matrix (Panfili et al., 2005).

3.2. Micro-XRF

Elemental mapping of *F. rubra* roots shows that Zn is associated with Mn in localized spots, and uniformly distributed without manganese in the vascular cylinder as expected for this nutritive element (Fig. 2—Rout and Das, 2003). All roots have Zn in their central stele, but not all are speckled with Mn–Zn precipitates. Some root fragments are partly covered by Zn-free Fe-rich plaques (Fig. EA-2). These plaques are made of ferric oxyhydroxides, as indicated by their optical rusty color (Fig. 1a, top right). In Zn–Mn–Ca tricolor representation all Mn–Zn precipitates generally have the same color (Fig. 2), even among different roots (Fig. EA-2), meaning that the relative proportions of Zn, Mn and Ca are about the same. The correlation coefficient between Zn and Mn counts for the precipitates is 0.8, with \(P \)-value < 0.0001 for the Anova \(F \)-test (Fig. 2). The Zn:Mn atomic ratio was calculated from the relative absorption jumps measured at the Mn and Zn K-edges on four particles. For each particle, a pre-absorption edge background was removed first, and then a linear fit to the post-edge region was extrapolated back to the edge to measure edge jumps. The ratio of the Zn to Mn edge jumps is 0.310(7), which translates into a Zn:Mn ratio of 0.46(1) when taking into account the atomic absorptions of the two elements. A consistent 0.44 value was obtained independently with the Eagle III spectrometer. This analysis also confirmed that root precipitates have a constant Ca:Mn ratio. An atomic ratio of 0.41 was calculated after correction of the Ca-fluorescence from the root.

![Fig. 1. Roots of *Festuca rubra* grown on a Zn-contaminated sediment. Optical microphotograph (a), and scanning electron microscope image with (b) backscattered electrons and (c) secondary electrons.](image1)

![Fig. 2. Tricolor (RGB) \(\mu \)-XRF map of a root with Mn–Zn precipitates. Red codes for Ca, green for Zn, and blue for Mn. Each pixel is colored in proportion to Ca-, Zn- and Mn–K\(\alpha \) signals. Pixel size is 7 \(\times \) 7 \(\mu \)m\(^2\). The graph is a pixel-by-pixel scatterplot of Zn counts vs. Mn counts, showing the constant Zn:Mn ratio.](image2)
3.3 Micro-EXAFS spectroscopy

The Mn and Zn μ-EXAFS spectra for all precipitates were indistinguishable from each other, and thus averaged to improve the signal-to-noise ratio. If the precipitates consisted of an assemblage of distinct Zn and Mn species, the proportions of these species would most likely vary among the analyzed grains, and this variability would be detected by μ-EXAFS (Panfili et al., 2005). However, this was not the case, suggesting that all root precipitates consist of a single species, hereafter referred to as “Mn–Zn precipitate”, in agreement with μ-XRF data.

3.3.1 Mn-EXAFS in Mn–Zn precipitate

Fig. 3 compares the EXAFS spectrum of Mn–Zn precipitate with those of reference compounds. The references used are hollandite (Hol) and todorokite (Todo), two tectomanganates with 2×2 (Hol) and 3×3 (Todo) tunnel structures, TcBi, a triclinic birnessite with 31% Mn$^{3+}$ in the layers, [Na$^{+}$0.5Li$^{0.31}$H$_2$O$_{0.40}$Mn$^{3+}_{0.66}$Mn$^{4+}_{0.31}$]O$_2$ (Silvester et al., 1997; Lanson et al., 2002a), Lit, a synthetic lithiophorite [(Li$_{0.69}$Li$_{0.32}$)(Mn$_{0.66}$Mn$_{0.32}$)]O$_2$(OH)$_2$ (Manceau et al., 2005), HBi, a hexagonal birnessite prepared by equilibrating TcBi at pH 4 ($\text{H}_2\text{O}^{0.33}\text{Mn}^{3+}_{0.043}\text{Mn}^{4+}_{0.123}(\text{OH})_{0.013}$ (Mn$^{3+}_{0.72}$Mn$^{4+}_{0.111}$Vac$_{0.167}$)O$_2$ (Silvester et al., 1997; Lanson et al., 2000), chalcophanite (Chalco), a Zn-rich phyllomanganate with one in seven octahedral sites vacant and capped on each side of the surface layer by interlayer octahedral Zn atoms [ZnMn$_{3}O_{7}$–3H$_2$O—(Wadsley, 1955)], and dBi, a turbostratic birnessite with no interlayer Mn and no layer Mn$^{4+}$[Na$^{0.24}$H$_2$O$_{0.72}$Mn$^{3+}_{0.94}$Vac$_{0.06}$]O$_2$—(Villalobos et al., 2006)]. TcBi and Lit have a similar content and no layer Mn$^{3+}$ and dBi, a turbostratic birnessite with no interlayer Mn.

Mn–Zn precipitate is not a tectomanganate because i) the second EXAFS oscillation of tectomanganates is split or has a shoulder at 6.5 Å$^{-1}$, depending on the tunnel size (Manceau and Combes, 1988; McKeown and Post, 2001; Manceau et al., 2007b), and ii) their [7.3–9.5 Å$^{-1}$] indicator region (Marcus et al., 2004b) does not match the data (Figs. 3a-b). In the indicator region, Mn–Zn precipitate has a single maximum at 8.0–8.1 Å$^{-1}$ like dBi, HBi, and Chalco. The shape and position of this maximum is diagnostic of Mn$^{3+}$-rich manganese layers with hexagonal symmetry (Gaillot et al., 2007). For example, this maximum is shifted to 7.9 Å$^{-1}$ (i.e., consistent with longer distances) in Lit (Manceau et al., 2004) due to the large amount of Mn$^{3+}$ in the hexagonal layer. TcBi has a distinctive double peak with a minimum at 7.9–8.0 Å$^{-1}$ as a result of the split of the Mn–Mn distances induced by the linear ordering of Mn$^{3+}$ and Mn$^{4+}$ cations in the layer (Drits et al., 1997; Lanson et al., 2002a; Gaillot et al., 2003, 2007; Manceau et al., 2005). This cation ordering lowers the layer symmetry from hexagonal to orthogonal. Thus, the Mn–Zn precipitate is a phyllomanganate having hexagonal layer symmetry and little layer Mn$^{3+}$. The subtle differences between Mn–Zn precipitate and some phyllomanganate references are more obvious when the data are Fourier transformed (FT, Fig. 4). The phase of the Mn$_{1\text{P}}$ peak matches those of dBi, Chalco, and HBi, and is shifted to a shorter distance relative to Lit. In phyllomanganates, the Mn$_{1\text{P}}$ peak represents Mn atoms in the first-neighbor layer octahedra (Manceau and Combes, 1988). Therefore, its phase depends on the nearest Mn–Mn distance (Mn–Mn1 pair), and is sensitive to the amount of Mn$^{3+}$ in the layer similarly to the
phase of the O peak. However, the sensitivity of the phase of this peak to the presence of Mn$^{3+}$ is not high enough to distinguish HBi (11% layer Mn$^{3+}$ per octahedral site) from dBi and Chalco (0%—Fig. EA-3). The Mn3 E peak is twice as sensitive as the Mn1 E peak because it arises from the third-neighbor octahedra at twice the Mn–Mn1 distance (see for example Fig. 11 in Manceau et al., 2005). The sensitivity is now high enough to differentiate HBi from dBi and Chalco, as shown in Fig. 4. Thus, using the phase of the Mn1 E and Mn3 E peaks as chemical probes to the layer composition, we conclude that Mn–Zn precipitate has less Mn$^{3+}$ in the octahedral layers than HBi (11%), if any. Confirming evidence is found in the comparison of the frequency of EXAFS spectra. Fig. 3 shows that the overall EXAFS frequency, and hence interatomic distances, increase from dBi/Chalco/Mn–Zn precipitate, to HBi, to Lit/TcBi, as a result of the increasing amount of layer Mn$^{3+}$ (Gailloit et al., 2007).

In contrast to the Mn1 E peak, the phase of the O peak (i.e., average Mn–O distance in the layer and interlayer) matches those of the two Mn$^{3+}$-free references (dBi, Chalco) and is slightly shifted to lower distance relative to both HBi and Lit. This shift is barely visible in Fig. 4, but clearly apparent when the [1–3 Å]$R+\Delta R$ interval is expanded (Fig. EA-3). Thus, Mn–Zn precipitate has no detectable Mn$^{3+}$ in the layer similarly to dBi and Chalco, nor in the interlayer, in contrast to HBi.

The FT of Mn–Zn precipitate also differs from that of HBi by the absence of the Mn1 TC peak from Mn layer-Me pairs at ~3.5 Å ($R+\Delta R \sim 3.1$ Å), where Me is an interlayer metal cation, such as Mn, Zn, or Pb, in triple-corner sharing position above or below vacant layer sites (TC linkage—Manceau et al., 2002b). When there are interlayer Mn atoms, this peak is intense because each interlayer Mn is surrounded by as many as six Mn layer neighbors. In contrast, Mn layer atoms near an octahedral vacancy have fewer interlayer Mn neighbors, their exact number depending on the density of layer vacancies and composition of the interlayer. Here, the lack of Mn1 TC peak in Mn–Zn precipitate suggests that it has no detectable Me cations on either side of the layer vacancies. The Mn5 E peak is also absent in the FT of Mn–Zn precipitate, as in dBi, but not HBi nor Chalco. This peak arises from the 5th Mn shell at about 2.90 × 3 = 8.7 Å, and is enhanced by forward scattering from two intervening Mn layer (Manceau et al., 2005). The absence of this peak in Mn–Zn precipitate indicates that the octahedral layers have a small lateral dimension. This peak is also absent in Lit, but in this case because the Mn–Mn5 shell is split as a result of the Mn$^{4+}$–Mn$^{3+}$ ordering in the layer (Manceau et al., 2005).

3.3.2. Zn-EXAFS in Mn–Zn precipitate

The best spectral match of Mn–Zn precipitate to our Zn species database was obtained with tetrahedrally coordinated Zn (IVZn) sorbed above/below octahedral vacancies of a phyllomanganate (IVTC site—Fig. 5a). This Zn complex is common in nature and its local structure has been described previously (Manceau et al., 2000a, 2002b; Marcus et al., 2004b; Isaure et al., 2005; Toner et al., 2006). Although the IVZn-sorbed phyllomanganate reference provides a good approximation of Zn local structure in Mn–Zn precipitate, there are significant differences between the two spectra, particularly in the phase mismatches between 6.5 and 10 Å$^{-1}$, and the symmetry of the first and second oscillations. These differences have been documented previously and result from the mixed occupancy of the TC site by tetrahedral and octahedral Zn (Manceau et al., 2002b, 2007b). Adding the chalcoissanite or IV/IVZn-sorbed dBi reference (Fig. 5b—Toner et al., 2005a, 2006) in a two-component linear fit to the data compensated for the phase shift and
asymmetry of the first oscillation, but not entirely for that of the second (Fig. 5c). All attempts to suppress this residual by adding a third component to the linear fit failed. Therefore, although there is some uncertainty on the exact configuration of the minor VIZn site, the IVTC+ VITC model is the best description of the data we can offer. Consideration of an edge-sharing complex (VITE) at layer edges did not reproduce the phase as well as the VITC surface species. The VITC species may occur also at the edge of the Mn–Zn precipitate layer, instead of the basal surface, in which case it has a slightly different binding environment from that of dBi. Thus, the dBi and chalcophanite standards may not be the best proxies for the VITC species. The fraction of each Zn species derived from the two-component least-squares fit is $87 \pm 10\%$ IVTC and $27 \pm 10\%$ VITC.

3.3.3. Zn-EXAFS in Zn-only precipitate

A few spots in the μ-XRF maps contained Zn and little else detectable. EXAFS spectroscopy identified zincite (ZnO) and sphalerite (ZnS), two mineral species originally present in the untreated sediment (Isaure et al., 2002). These grains are likely residual slag material stuck to the root surface that were not removed by washing. None of the Zn species formed in the rhizosphere of *F. rubra* after the two years of experiment were detected in or at the root surface.
3.3.4. Zn-EXAFS in the root vascular cylinder

Micro-EXAFS spectra were recorded in the vascular cylinder of four distinct roots, at spots containing little Mn. All spectra were indistinguishable, indicating that Zn speciation is uniform, and thus averaged. The resulting Root spectrum has the same frequency as the Mn–Zn precipitate spectrum, which suggests that Zn is also mostly tetrahedral in the roots (Fig. 5d). However, in contrast to Mn–Zn precipitate, the second and third oscillations of the Root spectrum are not split, indicative of “light” backscatters from second-shell contributions. Consistently, the best spectral match to our organic and inorganic database of the Root spectrum was provided with Zn in a biofilm (Zncell7, Fig. 5e). This reference has 80 ± 10% Zn complexed to phosphoryl groups and 20 ± 10% to carboxyl groups (Toner et al., 2005b). Consistent with this other study, consideration of carboxyl (citrate, Fig. 5f) and phosphate (phytate, Fig. 5g) Mn–Zn sorbed Penicillium chrysogenum, Fig. 5h—Sarret et al., 1998b) ligands alone, did not yield an optimal fit to the data. Zinc preferential binding to phosphate groups has been reported also in the roots of Arabidopsis halleri and A. lyrata grown hydroponically, on bacterial and fungi cells, and in biofilms (Sarret et al., 2002; Fein et al., 2001). These studies have shown that Zn has a higher affinity for phosphate than for carboxyl groups, which is consistent with the predominance of the phosphate species in F. rubra roots.

3.4. Micro-XRD

3.4.1. Qualitative description of the data

According to μ-XRF and μ-EXAFS, Mn–Zn precipitate is a phyllomanganate with hexagonal layer symmetry, little to no layer Mn^{3+}, less interlayer Mn^{3+} than HBi, and as much as 0.46 interlayer Zn per total Mn, of which 87 ± 10% is tetrahedral and 27 ± 10% octahedral. Despite its lamellar structure, the XRD pattern of Mn–Zn precipitate shows no patent basal reflections (Fig. 6). The XRD trace is dominated by two reflections at ~2.45 and ~1.42 Å, the first one being asymmetric towards higher 1/d values. This profile is characteristic of lamellar compounds with turbostratic stacking, i.e., lacking well-defined displacement/rotation between successive layers (Warren, 1941; Biscoe and Warren, 1942; Brindley, 1980). The positions, profiles, and relative intensities of the two peaks match the [02,11] and [02,31] scattering bands of turbostratic birnessite, choosing a C-centered cell for their crystallographic assignment (Drits et al., 1997, 2007; Villalobos et al., 2006). Their d-spacings are in the ratio of 1.73, close to the \(\sqrt[3]{3} / 2\) value for hexagonal symmetry. Their profiles are controlled by the structure factor and can thus be used for structural determinations (Villalobos et al., 2006; Drits et al., 2007), as shown below.

3.4.2. Simulation of the 0.35–0.80 Å\(^{-1}\) 1d interval

XRD simulations were performed with the C-centered unit-cell parameters \(b = 2.850\) Å, \(a = b\sqrt{3}/2 = 4.936\) Å, \(\gamma = 90°\) derived from the position of the [02,11] and [02,31] bands, \(d(001) = 7.20\) Å, and a random layer stacking (\(W_r = 100\%, \text{Fig. EA-4}\)). The atomic coordinates for the IVTC and VI-TC sites were considered to be the same as those in Zn-sorbed birnessite (Table 1—Lanson et al., 2002b). The Ca position was assumed to be close to that in Ca-rich birnessite (Drits et al., 1998), that is in the mid-plane of the interlayer almost above a tetrahedral surface site (TE position—Fig. EA-5). Thus, parameters optimized in the simulations are the amount of vacant layer sites, the amount, position, and coordination of interlayer Zn\(^{2+}\) and Mn\(^{2+,3+}\), the xy coordinates of Ca\(^{2+}\), the position of water molecules, and the size of the coherent scattering domains (CSDs) in the ab plane. The CSDs were considered to have a disk-like shape, whose average radius was constrained by fitting the maximum at ~2.45 Å (Villalobos et al., 2006).

Since the phyllomanganate has 0.46 interlayer Zn per total Mn, at least 0.186 vacant layer sites per octahedron are needed to accommodate all Zn \([0.186 \times 2/(1.00 – 0.186) = 0.46]\). In this case, every vacant site is capped by one Zn on either side. No satisfactory agreement between theory and experiment could be obtained with this model, regardless of the amount and position of Ca\(^{2+}\). In particular, the high 1/d tail of the [02,11] band at ~0.43 to 0.45 Å\(^{-1}\) was poorly reproduced (Fig. 7a — \(R_{WP} = 3.57\%\), \(R_{Exp} = 1.57\%\)). To reproduce this feature it was necessary to increase the density of vacant sites to 0.22, and thus to introduce interlayer Mn in TC and TE sites to keep the Zn:Mn ratio constant. Our best theoretical model to the data is shown in Fig. 7b (\(R_{WP} = 3.49\%\), \(R_{Exp} = 1.57\%\)), and structural parameters are listed in Tables 1 and 2. The structural formula is \([\text{Mn}_{0.78}\text{Va}_{0.22}\text{O}_2]\text{Mn}_{0.015}\text{Mn}_{0.046}\text{Zn}_{0.038}\text{Zn}_{0.038}\text{Z}_{0.150}\), and the structure model is schematized in Fig. 8 and EA-5. The refined model contains 0.38 Ca per Mn, in agreement with μ-XRF data (0.41), at a position \([\sim 0.410, 0, 1/2]\) and symmetric positions slightly shifted from the ideal TE position \([\sim 0.333, 0, 1/2]\—Fig. EA-5). Interlayer \(\text{H}_2\text{O}\) molecules that are not bound to Zn and interlayer Mn are located in (0.220, 0, 1/2) and symmetric positions. This position is similar to ordered (Lanson et al., 2002a) and disordered (Villalobos et al., 2006) Na-exchanged birnessite varieties. It allows for the formation of

![Fig. 6. XRD pattern of Mn–Zn precipitate after subtraction of the scattering from the root.](image-url)
strong H-bonds with O_{layer} atoms \(|d(O_{layer}-H_{O_{inter}}) = 2.66 \text{ Å}|\). Overall, only the Mn TE position is new, all others have been described previously for other birnessite varieties.

3.4.3. Sensitivity of calculated XRD patterns to structural parameters

As the optimal fit to data was obtained using a trial-and-error approach, the sensitivity of the XRD simulations to key structural parameters needs to be assessed. A key parameter for birnessite's ability to sorb trace metals is the origin of the layer charge. In the present model, the layer charge arises from layer vacancies only, not at all from substitution of Mn$^{3+}$ for Mn$^{4+}$ in the layer, because the hexagonal layer symmetry and small b unit-cell dimension (2.85 Å) are incompatible with appreciable amount of Mn$^{3+}$ in the layer (Gaillot et al., 2005). When birnessite contains \sim25% layer Mn$^{3+}$ per octahedral site with the long Mn–O bonds oriented at random, $b = 2.895 \text{ Å}$ (Gaillot et al., 2007) and the [20,11] and [02,31] bands are shifted to lower 1/d values relative to data ($R_{WP} = 7.15\%$, Fig. 7c). Mn–Zn precipitate has the same b value as HBi (2.850 Å) which contains 11% layer Mn$^{3+}$ per octahedral site (Lanson et al., 2000). Based on EXAFS results, this amount is regarded as an upper limit. Also, if the layer contained a high proportion of Mn$^{2+}$ cations ordered in rows, as in triclinic birnessite, a similar b value (2.84–2.85 Å) would be measured but the [02,31] band would be a doublet due to the departure from hexagonal symmetry (Drits et al., 2007; Gaillot et al., 2007). Calculations show that the band splitting decreases with the layer dimension, but that it should still be observed for a CSD dimension of 33 Å, the optimal CSD value (Fig. 7d–$R_{WP} = 6.79\%$).

The sensitivity of XRD profiles to the amount, coordination, and position of high-Z interlayer scatterers, and to the number of vacant layer sites is illustrated next. If interlayer Mn atoms are located only in VITE sites (0.056 per octahedron) rather than distributed over VITE and VITC sites (0.046 and 0.010, respectively), the dip at \sim0.52 Å$^{-1}$ is deeper and the intensity of the broad hump at \sim0.60 Å$^{-1}$ is increased (Fig. 7e–$R_{WP} = 3.60\%$). When the number of interlayer Ca$^{2+}$ is decreased from 0.318 to 0.240, there is a deficit of intensity in the 0.43–0.45 Å$^{-1}$ region (Fig. 7f–$R_{WP} = 3.54\%$). Similarly, decreasing the number of interlayer Zn from 0.388 to 0.244, and that of vacant layer sites from 0.22 to 0.15 broadens the high 1/d tail of the [20,11] band and shifts the hump at \sim0.60 Å$^{-1}$ to lower 1/d values (Fig. 7g–$R_{WP} = 4.92\%$). Increasing the proportion of octahedrally coordinated interlayer Zn from 23% to 50% also broadens the high 1/d tail of the [20,11] band and increases the intensity of the broad hump at \sim0.60 Å$^{-1}$ (Fig. 7h–$R_{WP} = 3.99\%$). The sensitivity of XRD profiles to 11Zn, 13Zn, and Ca coordinates is shown in Figure EA-6.

3.4.4. Simulation of the 0.05–0.35 Å$^{-1}$ 1$/$d interval

Despite the lamellar structure of Mn–Zn precipitate, its XRD pattern lacks well-defined 00l reflections. To assess the possible origin of this oddity, the 001 and 002 reflections were calculated for crystallites with extremely small CSD dimension along the c' axis (Fig. 9). Calculations show that at least two layers are required to modulate the scattering profile at low 1/d values, otherwise the X-ray intensity steadily decreases with increasing 1/d (Fig. 9). The best fit to data was obtained with a mixture of crystallites containing 1, 2, and 3 layers in the ratio of 20:3:1, respectively, leading to an average CSD dimension along the c' axis of 1.2 layers (\sim8.6 Å).

4. DISCUSSION

4.1. Structure model

4.1.1. Amount of vacant sites and Zn loading

Except for one sample obtained by metal sorption on poorly crystalline Mn oxides (Nelson et al., 1999), the
Table 1
Structural parameters of Mn–Zn precipitate derived from the simulation of XRD data

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>ζ</th>
<th>Occ.</th>
<th>x</th>
<th>y</th>
<th>ζ</th>
<th>Occ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn-layer (Mn1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.780</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>O-layer (O1)</td>
<td>0.333</td>
<td>0</td>
<td>1.00</td>
<td>1.00</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TC Mn_inter–O-layer</td>
<td>0</td>
<td>0</td>
<td>2.20</td>
<td>0.005</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>TC Mn_inter (Mn2)</td>
<td>0</td>
<td>0</td>
<td>2.20</td>
<td>0.005</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H2O_inter (O2)</td>
<td>—0.333</td>
<td>0</td>
<td>3.45</td>
<td>3.015</td>
<td>0.333</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IV Mn_inter (Mn3)</td>
<td>—0.333</td>
<td>0</td>
<td>3.20</td>
<td>0.023</td>
<td>0.333</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H2O_inter (O3)</td>
<td>0</td>
<td>0</td>
<td>3.45</td>
<td>0.069</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IV Zn_inter (Zn1)</td>
<td>0</td>
<td>0</td>
<td>2.20</td>
<td>0.044</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H2O_inter (O2)</td>
<td>—0.333</td>
<td>0</td>
<td>3.45</td>
<td>1.0132</td>
<td>0.333</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IV Zn_inter (Zn2)</td>
<td>0</td>
<td>0</td>
<td>1.77</td>
<td>0.150</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H2O_inter (O4)</td>
<td>0</td>
<td>0</td>
<td>3.70</td>
<td>0.150</td>
<td>0</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Ca_inter (Ca1)</td>
<td>—0.410</td>
<td>0</td>
<td>3.60</td>
<td>0.053</td>
<td>0.410</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cainter (Ca1)</td>
<td>—0.295</td>
<td>0.115</td>
<td>3.60</td>
<td>0.053</td>
<td>0.295</td>
<td>0.115</td>
<td>3.60</td>
<td>0.053</td>
</tr>
<tr>
<td>Cainter (Ca1)</td>
<td>—0.295</td>
<td>—0.115</td>
<td>3.60</td>
<td>0.053</td>
<td>0.295</td>
<td>—0.115</td>
<td>3.60</td>
<td>0.053</td>
</tr>
<tr>
<td>H2O_inter (O5)</td>
<td>0.220</td>
<td>0</td>
<td>3.60</td>
<td>0.04</td>
<td>—0.220</td>
<td>0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>H2O_inter (O5)</td>
<td>—0.110</td>
<td>0.330</td>
<td>3.60</td>
<td>0.04</td>
<td>—0.110</td>
<td>—0.330</td>
<td>3.60</td>
<td>0.04</td>
</tr>
<tr>
<td>H2O_inter (O5)</td>
<td>—0.110</td>
<td>—0.330</td>
<td>3.60</td>
<td>0.04</td>
<td>—0.110</td>
<td>—0.330</td>
<td>3.60</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Note: b = 2.850 Å, a = b/√3 = 4.936 Å, γ = 90°, and d(001) = 7.20 Å. x and y coordinates are expressed as fractions of the a and b parameters, respectively. Coordinates along the c′ axis, ζ, are expressed in Å to point out the thickness of layer and interlayer polyhedra. The average dimension of the coherent scattering domains (CSDs) along the c′ axis is 1.2 layers (8.6 Å). The average radius of the disk-like CSDs in the ab plane is 33 Å. This value was calculated by fitting the [20,11] reflection. Un-refined thermal B factors are 0.5 Å² for Mn-layer, 1.0 Å² for O-layer, Mn-layer–TEMn_inter.–O-layer distance should be increased by 0.046 Mn. Each Mn layer–TEMn_inter.—H2O 2.07, Mn-layer–IVZn_inter.–H2O 1.93, Mn-layer–VIZn_inter.–H2O 2.07.

Table 2
Selected interatomic distances for the optimal structure model

<table>
<thead>
<tr>
<th>Atomic pair</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn_inter–O_inter</td>
<td>1.925</td>
</tr>
<tr>
<td>TC Mn_inter–O_inter</td>
<td>2.04</td>
</tr>
<tr>
<td>IV Zn_inter–O_inter</td>
<td>1.82</td>
</tr>
<tr>
<td>C_inter–O_inter</td>
<td>2.89</td>
</tr>
<tr>
<td>Mn_inter–IV Zn_inter</td>
<td>3.60</td>
</tr>
<tr>
<td>Mn_inter–TC Mn_inter</td>
<td>3.60</td>
</tr>
<tr>
<td>TC Mn_inter–H2O</td>
<td>2.07</td>
</tr>
<tr>
<td>IV Zn_inter–H2O</td>
<td>2.07</td>
</tr>
<tr>
<td>IV Zn_inter–H2O</td>
<td>1.93</td>
</tr>
<tr>
<td>H2O_inter–O_inter</td>
<td>2.66</td>
</tr>
<tr>
<td>Mn_inter–IV Zn_inter</td>
<td>3.35</td>
</tr>
<tr>
<td>Mn_inter–TE Mn_inter</td>
<td>2.75</td>
</tr>
</tbody>
</table>

4.1.2. Presence of heavy scatterers above and below vacant layers sites

According to XRD and Zn-EXAFS, Mn–Zn precipitate has 0.300 ¹⁵Zn and 0.088 ⁴⁰Zn per octahedron in TC position (Table 1). The Zn–Mn pairs are detected at the Zn K-edge (Fig. EA-7) but not at the Mn K-edge for two possible reasons. In a vacancy-free layer, each Mn has six nearest-neighbor Mn atoms. In Mn–Zn precipitate, this number is 4.25 if two vacancies cannot be adjacent which is always the case in layered structures (Manceau et al., 2002b). Thus, each Mn octahedron is surrounded statistically by 1.75 vacant sites. With 80% of these vacant sites capped by Me cations on both sides, and 20% on one side only, Mn_inter–O_inter distance should be increased by ~0.1 Å to provide more realistic Zn–O bond valence (Table EA-1). This cannot be achieved by changing the z coordinate of ¹⁵Zn (Fig. EA-6b). Alternatively, moving apart the three oxygen atoms delimiting the underlying vacancy by 0.15 Å in the [110], [010], and [001] directions increases the ¹⁵Zn_inter–O_inter distance from 1.82 to 1.95 Å, as discussed in Manceau et al. (2002b).

4.2. Intensity of basal reflections

Birnessite and vernadite minerals were given different names because the basal reflections of birnessite at 7.2–7.0 Å (001) and 3.6–3.5 Å (002) were not observed...
Mn$^{4+}$

Zn$^{2+}$

lated layers. Measurements of the Mn edge jumps on differ-

that Mn–Zn precipitate is essentially an assemblage of iso-

average. Here, this number is as low as 1.2 layers, meaning

when the diffracting crystallites have only 2–3 layers, on

this mineral is a view of Arrhenius et al. (1978) and Giovanoli (1980) that

et al., 2003; Jurgensen et al., 2004; Webb et al., 2005b; Bod-

ermic and chemical (Pseudomonas putida (Villalobos et al., 2003, 2006; Toner et al., 2005a), Leptothrix discophora (Nelson et al., 1999, 2002; Nelson and Lion, 2003; Jurgensen et al., 2004; Saratovsky et al., 2006), and Bacillus sp. strain SG-1 (Mandernack et al., 1995; Tebo et al., 1998; Webb et al., 2005a,b) are the three fairly-well characterized bacterial model systems for the oxidation of manganese in the environment. Manganese oxidation and the subsequent precipitation of Mn(III,IV) bioxides by microscopic fungi is also well documented (Krumbein and Jens, 1981; Emerson et al., 1989; Schulze et al., 1995; Tani et al., 2003, 2004; Miyata et al., 2004, 2006a,b; Thompson et al., 2005). Here, we showed that Mn can be biomineralized also in higher living organisms, such as plants. Except for its atypical high Zn content and the structural consequences thereof, this new manganese biomineral is no exception to the intrinsic nanocrystalline nature of biogenic phyllomanganates.

4.3. Biologically induced oxidation of manganese

Many microorganisms have the capacity to oxidize and precipitate Mn as manganite (Tebo et al., 2004; and references therein). Since biological oxidation of Mn is generally faster than abiotic oxidation, most natural Mn oxides are considered to be biogenic. Pseudomonas putida (Villalobos et al., 2003, 2006; Toner et al., 2005a), Leptothrix discophora (Nelson et al., 1999, 2002; Nelson and Lion, 2003; Jurgensen et al., 2004; Saratovsky et al., 2006), and Bacillus sp. strain SG-1 (Mandernack et al., 1995; Tebo et al., 1998; Webb et al., 2005a,b) are the three fairly-well characterized bacterial model systems for the oxidation of manganese in the environment. Manganese oxidation and the subsequent precipitation of Mn(III,IV) bioxides by microscopic fungi is also well documented (Krumbein and Jens, 1981; Emerson et al., 1989; Schulze et al., 1995; Tani et al., 2003, 2004; Miyata et al., 2004, 2006a,b; Thompson et al., 2005). Here, we showed that Mn can be biomineralized also in higher living organisms, such as plants. Except for its atypical high Zn content and the structural consequences thereof, this new manganese biomineral is no exception to the intrinsic nanocrystalline nature of biogenic phyllomanganates.

Although the mechanism of Mn(II) to Mn(IV) oxidation is presently unknown, the constant Zn:Mn ratio of the new Mn bioxide suggests the existence of a well-defined bioactive process, likely in response to metal toxicity. The occurrence of Zn–Mn precipitate only in the root epidermis and the absence in the roots of any Zn-rich species from the soil matrix (Panfili et al., 2005) suggest that Mn oxidation did not occur in the rhizosphere, and thus does not result from bacterial activity or abiotic reaction. Divalent manganese may have been complexed and transported to the roots by phytosiderophores (Römheld, 1991), and then oxidized by the plant itself or by endomycorrhizal fungi, as shown for wheat and soybean (Schulze et al., 1995; Thompson et al., 2005, 2006).

Knowing how to stimulate the formation of this new phase in biological systems, or how to synthesize it abiotically, would be a significant progress towards Zn immobilization in contaminated environments and their phytoremediation. Formation of this new phase could in particular facilitate the growth of plants in highly contaminated environments in lowering the concentration of bio-available Zn in the rhizosphere.

ACKNOWLEDGMENTS

The following persons are thanked for their contribution on various aspects of this work: Fabienne Marseille and Bertrand
Appendix A. Supplementary Data

REFERENCES

St-Cyr L. and Campbell P. (1996) Metals (Fe, Mn, Zn) in root plaque of submerged aquatic plant collected in situ: relations with metal concentrations in adjacent sediments and in the root tissue. *Biogeochemistry* 33, 45–76.

Associate editor: Garrison Sposito