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Abstract Nearly a century of mining activities
upstream have contaminated Lake Coeur d’Alene
and its tributaries with Pb, Zn, and other heavy
metals. Heavy metal concentrations in sediments of
the Coeur d’Alene watershed have been shown to be
inversely proportional to the sediment size fraction;
thus, analysis on a very small scale is essential to
determine the mobility and stability of heavy metals
in this environment. Micron-scale synchrotron-based
methods were used to determine the association of
heavy metals with solid phases in sediments of the
Coeur d’Alene River. Bulk X-ray diffraction (XRD),
extended X-ray absorption fine structure spectrosco-
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py, and synchrotron-based microfocused XRD com-
bined with microfocused X-ray fluorescence mapping
indicate the presence of crystalline Pb- and Zn-
bearing mineral phases of dundasite [Pb,Aly
(C0O3)4(OH)g:3H,0], coronadite [PbMngO;], stolzite
[PbWO,], mattheddleite [Pb;o(Si04);.5(S04).Cl,],
bindheimite [Pb,Sb,0], and smithsonite [ZnCOs].
Likely phases for Zn and Pb adsorption were
ferrihydrite, diaspore [AIO(OH)], manganite
Mn™O(OH)], muscovite [KAly(SisAl)O,o(OH,F),],
biotite [K(Fe,Mg);AlSizO;o(F,0H),], and montmoril-
lonite [Nag3(Al,Mg),Si,0;0(OH),-8H,0]. The large
predominance of Fe and Mn (hydr)oxides over other
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sorbent minerals suggests that the metal sorption
behavior is dominated by these (hydr)oxide phases.

Keywords Coeurd’Alene - Zinc - Lead -
Sediment Characterization - XAS

1 Introduction

The waters and sediments of the Coeur d’Alene River
(CdAR) in northern Idaho have been impacted by
decades of mining operations within the Coeur d’Alene
mining district. Lake Coeur d’Alene (LCdA) is fed at
the southern portion of the lake by the St. Joe River and
CdAR (Horowitz et al. 1992). These two rivers
contribute approximately 94% of the influent flow into
LCdA (Horowitz et al. 1995a). CdAR is composed of
two main tributaries, the South Fork of the CdAR and
its tributaries which flow through the Coeur d’Alene
Mining district and the North Fork which joins the
South Fork before continuing through an area of lateral
lakes and deltas into LCdA (Horowitz et al. 1992;
Balistrieri et al. 2003). The South Fork of the CdAR is
of particular interest as it and its tributaries provide
primary drainage for the Coeur d’Alene Mining district
(Horowitz et al. 1992, 1995a).

The history of this district as well as the type of ore
deposits and mineralogy has been summarized by
Leach and others (Leach et al. 1985; Rosenberg and
Larson 2000; Fleck et al. 2002; Mauk and White
2004; Panneerselvam et al. 2006). The mineralogy of
the Coeur d’Alene Mining District consists primarily
of quartz [SiO,] and siderite [FeCO5] veins contain-
ing deposits of galena [PbS], sphalerite [ZnS], and
tetrahedrite [Cu;,SbyS 3] (Leach et al. 1985). Pyrite
[FeS,], chalcopyrite [CuFeS,], and pyrrhotite [Fe,S,
x=0.8,1] are also locally abundant (Leach et al.
1985). Fe minerals including siderite, magnetite,
pyrite, pyrrhotite, goethite, hematite, and ferrihydrite
have been reported in sediments of LCdA and in the
upstream mining district (Farrand and Harsanyi 1997,
Cummings et al. 2000; Toevs et al. 20006).

Analyses of the sediment and water in the Coeur
d’Alene system have been examined by others
focusing on geology and geochemistry (Grieco
1981; Farrand and Harsanyi 1997; Rosenberg and
Larson 2000; Fleck et al. 2002; Mauk and White
2004), as well as surface and subsurface sediment
contamination and benthic transport (Maxfield et al.
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1974a; Reece et al. 1978; Horowitz et al. 1992,
1995a, b; Horowitz 1993; Woods and Beckwith 1997;
Harrington et al. 1998a, b; La Force et al. 1998, 1999;
Winowiecki 2002; Kuwabara et al. 2003; Toevs et al.
2006). Contamination of lateral lakes adjacent to the
delta (Harrington et al. 1998a; Sprenke et al. 2000;
Bostick et al. 2001), CdAR and upstream tributary
contamination (Maxfield et al. 1974b; Reece et al.
1978; Paulson 1997; Farag et al. 1998, 2000; La
Force et al. 1998; Balistrieri et al. 2003; Box et al.
2005), and downstream of LCdA (Grosbois et al.
2001) have also been studied. Horowitz et al. (1995a)
found that the CdAR and adjacent lake sediments
were the most heavily contaminated. Heavy metals in
the delta region of LCdA appear to be associated with
an operationally defined sulfidic phase (Harrington et
al. 1998b), while those elsewhere in LCdA appear to
be predominantly associated with the more mobile
hydroxides (Horowitz et al. 1995a; Woods and
Beckwith 1997), though there is some controversy
on this point (Horowitz et al. 1999).

Of concern in the CdAR system is the potential
contamination of unpolluted sediment from remobili-
zation of heavy metals in the fine fraction. Remobi-
lization may occur from any of the following
processes: (1) physical entrainment of the small
heavy-metal-laden particles from the upper sediment
column into the river (Kalnejais et al. 2007), (2)
adsorption of toxic metals to metal (hydr)oxides (e.g.,
ferrihydrite), clays, and organic compounds (e.g.,
humics, fulvics, citrate) followed by transport of these
bound metals in the water column (Lothenbach et al.
1997; Tonkin et al. 2002; Balistrieri et al. 2003), and
(3) reductive dissolution of mineral phases resulting
in release of adsorbed or co-precipitated heavy metals
(Fredrickson et al. 2001; Sengdr et al. 2007).
Additionally, micron- and smaller-scale particles are
often more reactive and can be more bio-available
(Oberdorster et al. 2005).

Until recently, phase association of heavy metals in
sediments could only be inferred by a combination of
electron microscopy, selected-area electron diffrac-
tometry, and elemental analysis (Geesey et al. 2008).
In the present study, we have attempted to character-
ize the mineral phases and geochemistry present in
CdAR sediments, focusing on the micron scale, using
synchrotron-radiation-based techniques in an effort to
identify mineral phases at the micron scale and their
potential for remobilization
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2 Materials and Methods

2.1 Study Area, Sediment Sampling,
and Characterization

Twenty-eight sample cores (15 cm) were taken 2.9 km
(Fig. 1) upstream of Harrison, Idaho, off of East Blue
Lake Road [N (47° 28" 43.8") W (116° 43’ 59.6")].
Samples were collected in April 2005 using 2-in.
schedule 20 polyvinylchloride (PVC) piping with
plastic caps. The PVC sampler was hand-driven into
undisturbed sediments under between 30 and 60 cm of
water and capped while underwater. Sealed samples
were placed on ice in plastic bags and transported
directly to laboratories at Washington State University
(WSU) where they were stored at —25°C. River water
was collected at approximately 30 cm in depth from a
total water depth of 60 cm in 1 L acid-washed
Nalgene® containers, capped underwater to prevent
head space contamination, and stored on ice. Upon
arrival at WSU, water samples were stored at 4°C for
48 h until analysis.

Fig. 1 Map of study area
[N (47° 28" 43.8") W (116°
655 43" 59.6")] on Coeur
d’Alene River and adjacent
area; Inset: State of Idaho.
Black arrow shows the
sampling site

2.2 Water Analyses

The CdAR temperature was measured using an
alcohol thermometer at 5.5°C. Dissolved oxygen
(6.7 ppm) was measured using a portable dissolved
oxygen meter (Extech Instruments Model 407510).
For pore water extraction, intact (0—15 cm) frozen
cores were thawed in an anaerobic chamber (Forma
Scientific Inc. Model 1025), placed in acid-washed
Nalgene® bottles, sealed, and centrifuged at
7,000 rpm for 20 min. The supernatant was removed
in an anaerobic chamber. Samples were filtered
(0.45 pum) and acid-stabilized before being analyzed
for alkalinity, total organic carbon, cations, anions,
and trace metals at the Analytical Sciences Laboratory
at the University of Idaho (EPA methods 200.7,
200.8, 300.0, 310.7, and 415.1).

2.3 Sediment Analyses

Visual observations of the sediment cores showed no
distinct redox zones (as observed by lack of distinctly
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colored zones) and appeared to be yellowish to
yellowish brown, fine-grained sandy-silt, and homoge-
nous with the exception of occasional organic matter
(primarily leaf debris) distributed within the core. Due to
the homogenous nature of the sampled sediments, the
cores were uniformly split in 5-cm sections for bulk
analyses, starting from the sediment—water interface.

Well-mixed sediments from three intact cores
(015 cm) were dried under 90% N»/5% H»/5% CO,
in an anaerobic chamber, sealed under anaerobic
conditions, and shipped to the Advanced Light Source
at the Lawrence Berkeley National Laboratory where
microfocused X-ray diffraction (uUXRD) and fluores-
cence (LXRF) mapping were performed. Samples were
prepared as described previously by Ginder-Vogel et al.
(2005). Kapton® tape enclosed the sediment samples
to prevent oxidation. The samples were analyzed on
beamline 10.3.2 using a water-cooled Si (111) mono-
chromator, two Si mirrors in Kirkpatrick-Baez geom-
etry, and a Bruker X-ray charge-coupled device camera
at 14,000 keV corresponding to a wavelength of
0.8856 A. Images were processed using Fit2D
(Hammersley 1997), corrected to remove background
Kapton® tape, and interpreted using JADE® (Materials
Data Inc. version 6.5) software. Bulk XRD was carried
out using standard procedures (Borch et al. 2008) on a
Rigaku Geigerflex diffractometer with Cu ko radiation
(35 kV, 15 mA). Samples were prepared for XRD
analysis by pressing the powdered mineral material
into a 0.5 mm depression on a Rigaku monocrystalline
silica XRD slide and interpreted using JADE®
software.

A split of the well-mixed sediments was used to
determine the structural environment of Fe using
extended X-ray absorption fine structure (EXAFS)
spectroscopy at the Stanford Synchrotron Radiation
Laboratory on beamline 11-2 (26-pole wiggler),
running under dedicated conditions. The EXAFS
analytical procedures used here were similar to those
described previously (Hansel et al. 2003; Borch et al.
2007). Energy selection was accomplished with a Si
(220) monochromator, and spectra were recorded by
fluorescent X-ray production using a Lytle-detector. A
set of Fe reference compounds (our library contains
over 20 common Fe-containing minerals) was used to
perform linear combination (LC) &° -weighted EXAFS
spectral fitting using the SixPACK interface to
IFEFIT (Webb 2005). Aqueous chemistry and XRD
were used to constrain the selection of mineral phases
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in the LC-EXAFS fitting procedure, although refer-
ence compounds were also chosen based on their
likelihood for being present in the lake sediment
(Borch et al. 2007). Elemental abundances determined
by XRF were used to support the presence of minerals
identified by XRD and EXAFS. Similarly, aqueous
chemistry was used in a supporting role to provide
guidance for selection of mineral phases (e.g., high
carbonate concentration might suggest the presence of
carbonate minerals such as siderite).

Grain size distributions were derived from five frozen
cores cut into 5-cm sections and classified into three
groups originating from sediment-water interface to 5,
5-10, and >10 cm. These sections were dried at 100°C
for 12 h. The grain size distribution of each section was
obtained using dry separation of US sieve sizes 16, 30,
60, 100, 140, and 200. Each sieve tray was washed and
weighed prior to separation. Sieves were stacked and
shaken to separate solids, then removed and weighed to
determine grain size fractions in each.

Sections from the sediment—water interface to 5,
5-10, and >10 cm were oven-dried (80°C) and
analyzed for elemental composition at the WSU Geo
Analytical Laboratories using XRF. Ten grams of
each section were finely ground using a tungsten
carbide bowl and weighed with the addition of a
lithium tetraborate flux (2:1 lithium tetraborate—
sediment). Sediments were then heated to 1,000°C
in a muffle furnace to drive off volatile compounds
and fuse with the flux. After heating, the vitrified
sample was reweighed to determine loss of volatile
compounds. Total elemental analysis was carried out
on an automated ThermoARL Advant’XP+ sequential
X-ray fluorescence spectrometer. Standard reference
materials were obtained from the National Institute of
Standards and Technology and pure quartz controls
were run to determine grinding bowl contamination.

3 Results and Discussion
3.1 Aqueous Chemistry

The measured chemical compositions of CdAR and
pore water samples are presented in Table 1. These
data are compared to analyses reported in Balistrieri et
al. (2003) and are within the range of historically
observed measurements from the US Geological
Survey database (monitoring site 12413860 near
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Table 1 Composition of Coeur d’Alene River and pore water

This study Balistrieri et al. (2003)

April 2005 November 2000
Species Units River water Pore water River water Pore water® MDL
Temperature °C 5.5 - - -
pH 7.2 6.4 7.21 6.56
Alkalinity Equivalent 0.38 1.14 0.54 5.25 0.06

mequiv/L

Total Organic Carbon mg/L 1.6 170 0.7 41 0.5
Fluoride mg/L P 1.7 - - 0.15
Chloride mg/L 0.7 2.8 18 0.5 0.2
Nitrite-N mg/L ND 0.81 - - 0.05
Nitrate-N mg/L ND 6.8 - - 0.05
Sulfate mg/L 5.6 59 19 269 0.2
Calcium mg/L 5.5 25 10 4 0.05
Potassium mg/L b 52 21 2 0.5
Magnesium mg/L 2.1 7.3 4 56 0.02
Iron mg/L 0.03 b 0.01 89 0.02
Manganese mg/L 0.032 27 0.1 5 0.005
Zinc mg/L 0.16 2.7 0.5 8 0.003
Arsenic ug/L b 9 <1 1,200 <1
Barium ng/L 18 160 29 80 10
Cadmium ng/L <1 18 2 0.5 <1
Chromium ng/L - 9 - 13 1
Cobalt ug/L b 23 <1 22 <1
Copper ng/L <1 3 - 2 <1
Lead ng/L 3 130 1 21 <1
Nickel ng/L <1 13 <1 34 <1
Vanadium ng/L b 2 - - <1
Charge Balance —6.41 1.07 2.10 —15.88

Adapted from (Sengor et al. 2007)
MDL method detection limit, ND not detected, — not reported
#Killarney pore water

®Below method detection limit

Harrison Idaho http:/nwis.waterdata.usgs.gov/id/
nwis/qw). The concentrations of heavy metals Ba,
Pb, and Cd in pore water measured in this study are
approximately two, six, and 36 times greater than
concentrations reported by Balistrieri et al. (2003).
Sulfate and As concentrations are about five and 130
times lower, respectively, than those reported by
Balistrieri et al. (2003). Historical data (1991-2007)
from the US Geological Survey database show a strong
positive correlation in filtered and unfiltered samples
(»<0.0001) between Pb and Zn and the redox active
elements Fe and Mn. Fe and Mn in unfiltered samples
show a negative correlation with river temperature
(»<0.0033 and p<0.0002, respectively) and to a

lesser extent pH (p<0.055, and p<0.0073, respec-
tively). This may suggest a seasonal element and may
explain some of the variability between the results of
this study and those of Balistrieri et al. (2003).

Iron (Fe(III) and Fe(Il)) was detected at 30 pg/L in
the river water; Fe was below the detection limit of
20 pg/L in the pore water. River water was filtered
with a 0.45 pum filter and acidified with HNOj3 at the
analysis laboratory according to the Environmental
Protection Agency methods 200.7 and 200.8. Ferrihy-
drite can rapidly form in oxic conditions and is
composed of nanocrystals that aggregate into larger
structures (Schwertmann and Cornell 2000). If the
aggregates were smaller than 0.45 um, then they
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could conceivably pass through a 0.45 um filter and
show Fe in the river water. The counterintuitive lack
of Fe in the pore water may suggest (1) that partial
oxidation of Fe occurred in the pore water due to
sampling procedures, (2) that mixing of the pore
water from the entire 15 cm depth generated iron
concentrations below the detection limit, (3) that
sediment pore water originated from oxic sediments
(e.g., diffusion of oxygen into the sediments from the
overlying water column or hyporheic flow of oxygen-
rich river water), or (4) a combination of these effects.
Rapid oxidation of sediment and pore water Fe(Il) to
Fe(IIl) hydroxides has been observed by others in this
system upon exposure to oxygen after sampling
(Horowitz et al. 1995b). The anoxic boundary in
LCdA has been reported at the water—sediment
interface (Harrington et al. 1998b), within 5 cm into
the sediments (La Force et al. 1999; Toevs et al. 2006)
and between 10 and 15 cm in the sediments
(Horowitz et al. 1992) and this variability may exist
in CdAR as well. As this study focused on sediment
cores extracted from the top 15 cm, the majority of
the core may have been oxic and thus contained little
dissolved Fe. Additionally, cold water temperatures
due to seasonal runoff at the time of sampling may
contribute to overall higher oxygen concentrations
due to lower aerobic microbial metabolic activity.
This would result in deeper O, penetration into

sediments causing lower pore water Fe concentrations
as Fe may precipitate as ferrihydrite. The possibility
that the sediments originated from the oxic sediments
is further supported by microarray and clone library
analysis that indicate predominantly oxygen-utilizing
bacteria (Barua et al. unpublished data).

3.2 Sediment Geochemistry
3.2.1 Physical Properties

Grain size distributions of CdAR sediments are
presented in Fig. 2. Dry grain size fractioning
revealed that the majority, by mass, of sediment
particles were in the smallest size fraction, below
75 um (this fraction contains primarily silt (2-50 pm)
and clay (<2 um) sized particles). This distribution is
most pronounced in the upper 5 cm of sediment
(Fig. 2). Horowitz et al. (1992) and Grosbois et al.
(2001) reported that the majority of metal contamina-
tion within LCdA is contained within the smallest
fractions (<63 pm) and that metal concentration is
inversely proportional to particle size. Because the
majority of the smallest particles are within the top
5 cm, this may pose a potential metal remobilization
issue when these sediments are disturbed by flooding,
bioturbation (Atkinson et al. 2007), or anthropogenic
activities, such as dredging (Kalnejais et al. 2007).

Fig. 2 Particle size distri- 70
bution of sectioned bulk
sediment using dry sieve & . 0-5cm
technique. Adapted from f??sﬂm
(Sengor et al. 2007) ' eem
50
é 40
bt
c
@
2
5 30 -
o
20
10 A
0 - T T T T -Tm T T
Below 75 75 105 150 250 590 1168
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3.2.2 Elemental Analysis

Total metal content observed in this study compares
well with the literature data (Reece et al. 1978; Farag
et al. 1998; Paulson 2001). This site is contaminated
with high levels of Zn (0.75% mass) and Pb (0.5%
mass; Table 2), both of which are toxic to biota (Brim
et al. 1999; Konopka et al. 1999; Sani et al. 2001; Lin
et al. 2003). Although total metal content is impor-
tant, the mobility, reactivity, and bioavailability of
heavy metals are dictated by crystallinity, particle
size, mineral phase, and associated chemistry in
which these metals reside (Haus et al. 2007).

3.2.3 Mineral Identification

Bulk sediment analysis using XRD (Fig. 3) indicates
the presence of quartz and siderite, which is in
agreement with previous studies of the primary
minerals in the CdAR system (Leach et al. 1985).
Muscovite [KAIL,(SisAl)O;o(OH,F),], jacobsite
[MnFe>O4], and dundasite [Pb,Al4(CO3)4(OH)g:
3H,0; the strongest dundasite peak was, however,
not obvious in the diffractogram] were also detected
as likely phases in CdAR sediments. Jacobsite is often
associated with hematite [x-Fe,O3] in Mn-containing
sediments and forms a solid solution series with
magnetite [Fe'PFe,0,] (Anthony et al. 1990), both
of which are found in LCdA (Farrand and Harsanyi
1997; Cummings et al. 2000; Fig. 3). Dundasite is

often associated with cerussite [PbCO3] (Cocco et al.
1972; Anthony et al. 1990; Downs 2006), a mineral
reported in the Coeur d’Alene Mining district
(Melchiorre et al. 2001).

For a better understanding of the mineralogy and
thus fate and transport of heavy metals in this system,
it was desirable to combine both macroscale and
microscale analyses. For the first time with CdAR
sediments, to our knowledge, a combination of
synchrotron-based LtXRD and uXRF techniques were
applied to provide high-resolution analyses of miner-
als and metal associations at the micron scale. uXRF
provides the means to map the distribution of toxic
metals while uXRD allows the identification of
crystalline trace-metal-bearing mineral phases and/or
the adsorbent to which the toxic metal may be
complexed. These analyses are limited to effectively
depth-averaged results but this stems from the
observed apparent homogeneity of the column.

Figure 4 shows an element map of Pb, Fe, and Zn.
These elements were selected for their high concen-
trations in CdAR sediments and biological activity
and/or toxicity (Table 2). Seven spots, each approx-
imately 5 pum?, were selected for analysis, three of
which (spots A, B, and C) are included in this text due
to their higher-quality diffractograms. Spot A indi-
cates the presence of smithsonite [ZnCO3] and calcite
[CaCO3] minerals (Fig. 5a), which are present in
other sediments around LCdA (Bostick et al. 2001;
Balistrieri et al. 2003). In the lateral lakes surrounding

Fig. 3 X-ray diffractogram 320
of bulk sediments showing =
probable mineral phases of s 256
. S 3
quartz [SiO,], siderite 8
[FeCOs], muscovite = 192
[KAL(SizA)O;9(OH,F),], G
jacobsite [MnFe,04], and § 128
dundasite [Pb,Al, Ko
(CO3)4(OH)g:3H,0] 64

N e ‘ Quartz [SiO,]

| | . . Siderite [FeCO,]

el Jo,  Museovite [RALBLADO,(OHL),]
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n 1L 1
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Fig. 4 Synchrotron X-ray fluorescence map (0.5 0.6 mm) with
a 5-pum spatial resolution of the CdAR sediment from homog-
enized sediment cores (0—15 cm). The inset shows an overview
map (3x2.5 mm; 15-um spatial resolution). This map shows
the spatial correlation between Pb (red), Fe (green), and Zn
(blue)

the CdAR, Bostick et al. (2001) found that seasonal
changes affected the partitioning of Zn with sulfidic
and carbonate phases predominating in flooded areas,
while (hydr)oxides were found in oxic, drier soils, and
sediments. The metal (hydr)oxide species were trans-
formed to carbonate and sulfidic species during
submersion due to reducing conditions; however, a
small portion remained as metal (hydr)oxides (Bostick

etal. 2001). Samples from the present study were taken
during spring runoff and could represent Zn hydroxide
phases transforming to Zn carbonate. With oxidation,
Zn is released and can adsorb to metal (hydr)oxides
(e.g., ferrihydrite), organic phases, clays, and other
minerals or remain free in solution (La Force et al.
1999). These changes illustrate the dynamic geochem-
ical cycling of Zn in this system. Metal carbonates,
such as smithsonite [ZnCOs], may be formed biogeni-
cally by reaction of the aqueous metal with biogeni-
cally produced bicarbonate (Lloyd and Lovley 2001).

Stolzite [PbWO,] was detected as a likely phase as
shown in Fig. 5b and is often associated with
cerussite and anglesite (Anthony et al. 1990; Downs
20006), both reported in the Coeur d’Alene Mining
district (Bookstrom et al. 2001; Melchiorre et al.
2001). Origins of this potential mineral in this system
are unknown. Analysis of spot B by uXRD supports
bulk XRD data showing muscovite present (Fig. 5b).
In addition, the diffractogram indicates the presence
of earlshannonite [MnFe,(PO,),(OH),-4H,0] and
montmorillonite [Nag3(Al,Mg),Si4010(OH),-8H,0].
These clay minerals are known to exchange cations,
such as magnesium and potassium, with other heavy
metals, possibly aiding in metal sequestration (Kurek
et al. 1996; Farquhar et al. 1997; Lothenbach et al.
1997). Zn was recently shown to coprecipitate with
interlayer AI’" cations to form a Zn-containing
hydroxyl—Al layer on the basal plane of montmoril-
lonite (Schlegel and Manceau 2007). These findings

Table 2 X-ray fluorescence spectroscopic analysis of major and trace elements in CdAR sediment

Primary sediment constituents (% mass) SD (% mass) Trace elements (% mass) SD (% mass)

Si0, 68.68 0.43 ZnO 0.747 0.014
TiO, 0.42 0.01 PbO 0.467 0.006
AlLO5 7.03 0.42 BaO 0.077 0.003
Fe,0; 15.26 0.05 Zr0O, 0.035 0.002
MnO 1.58 0.05 CeO, 0.021 5.10E-04
MgO 0.93 0.03 CuO 0.014 6.14E-05
CaO 0.41 0.02 Rb,O 0.008 3.07E-04
Na,O 0.48 0.06 V,0; 0.005 1.70E-04
K,0 1.84 0.06 Y,0; 0.005 2.22E-04
P,05 0.10 0.00 Nd,O5 0.005 2.67E-04
Sum 96.71 Cr,0; 0.004 1.90E-04
LOI (%) 8.52 La,03 0.004 3.02E-04
Trace elements (%) 1.40 SrO 0.003 2.30E-04
NiO 0.002 6.94E-05

Adapted from (Sengor et al. 2007)
SD standard deviation (N=3), LOI loss on ignition
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Fig. 5 a XRD of spot A
showing probable mineral
phases of smithsonite
[ZnCOs] and calcite
[CaCOs3], b XRD of spot B
showing probable mineral
phases of montmorillonite
[Nag.3(Al,
Mg),Si,0,¢(OH),-8H,0],
earlshannonite [MnFe,
(PO4)2(OH)24H20], stolzite
[PbWO,], and muscovite
[KAL(SizA)O;9(OH,F),],

¢ XRD of spot C showing
probable mineral phases of
coronadite [PbMngO 4],
mattheddleite

[Pb10(Si04)3 5(S04).CL],
bindheimite [Pb,Sb,0-],
manganite [Mn(III) O(OH)],
and diaspore [AIO(OH)].
The location of each ana-
lyzed spot is shown in

Fig. 4. XRD patterns were
obtained with a beam size
(or spot size) of 5 pm2. The
CdAR sediment analyzed
was obtained from homog-
enized sediment cores
(0-15 cm)
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suggest that montmorillonite can sequester Zn and
other heavy metals (e.g., Ni, Cu) with similar cation—
hydroxyl distances because the metal is included in
the vacant octahedral sites of the gibbsite-like
monolayer and may lead to permanent sequestration
(Schlegel and Manceau 2007). Similarly, Zn and other
cations have been observed to incorporate into the
interlayer spaces of muscovite (Friedrich et al. 2000).

Likely mineral phases observed in spot C were
coronadite [PbMngO,¢], mattheddleite [Pb;o(SiO4); 5
(804),Cl;], bindheimite [Pb,Sb,0O;], manganite
Mn™™O(OH)], and diaspore [AIO(OH)] (Fig. 5c).
Coronadite is a Pb-containing manganese oxide which
forms a tunnel structure into which the Pb is associated
(Post and Bish 1989; Post 1999). Mattheddleite-like
minerals have been identified as major components of
blast and dross furnace dust samples from Pb smelting
operations (Spear et al. 1998), such that identification
of mattheddleite in this system may reflect the result of
mining activities. Bindheimite is a constituent of the
primary Pb-Ag ores in the Coeur d’Alene Mining
district with nearly pure masses several feet in diameter
(Lawson and Meyer 1964). The source of this primary
mineral is likely from erosion and transport of exposed
veins or mine tailings.

Manganite and diaspore detected in spot C are
oxyhydroxide phases capable of adsorbing toxic metals
and have been the topic of several studies in the LCdA
area (Paulson and Balistrieri 1999; Tonkin et al. 2002;
Balistrieri et al. 2003). Manganite is most likely the
product of biological reduction of Mn followed by
oxidation to form the oxyhydroxide complex (Greene
and Madgwick 1991). Additionally, Mn oxyhydroxides
in the CdAR system have been shown to preferentially
adsorb Pb as a major component and Zn as a minor
component (Bookstrom et al. 2001). Due to mineral-
ogical heterogeneity of these sediments, it is difficult to
elucidate the nature of the mineral phases in all cases,
particularly on the micron scale. Small-scale analyses,
especially depth-averaged analyses, are somewhat
limited in extrapolating to the macroscopic sediments
for more generalized hypotheses and should be
interpreted cautiously.

Fe was the second most abundant sediment
constituent identified after Si by mass (Table 2) and
was selected for further spectroscopic studies by Fe-
EXAFS due to its abundance and potential role as an
important sorbent for toxic metals. In addition,
EXAFS spectroscopy allows detection of amorphous
phases which cannot be identified by XRD (Borch et

data

siderite

& fit fww

x
g 2L-ferrihydrite
=
biotite
pyrite
2 4 6 8 10 12
k (A7)

Fig. 6 &> weighted Fe-EXAFS spectrum (solid line; data) and
linear combination fit (dotted line; fit) of the CdAR sediment
from homogenized sediment cores (0—15 cm). Reference
minerals used for the LC-EXAFS fitting are listed with their
respective Fe-EXAFS spectra. Corresponding percents of Fe
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phases (mole basis) resulting from linear combination fits were
siderite (53 mol% Fe), ferrihydrite (38 mol% Fe), biotite (6 mol
% Fe), and pyrite (3 mol% Fe). The concentration of pyrite was
low but it significantly improved the fit. Data are £5% and the
detection limit is approximately 5 mol% Fe)
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al. 2008). Siderite (53 mol% Fe) and ferrihydrite
(38 mol% Fe) were identified as the major Fe phases
in CdAR sediment (Fig. 6). Biotite (6 mol% Fe) was
also found, though in much smaller quantities
(Fig. 6). Inclusion of pyrite (3 mol%) in the LC k*-
weighted EXAFS spectral fitting improved the \*
value for the fit by 22% and was thus included in the
fit despite its low concentration. The presence of
pyrite has been observed in earlier studies (Toevs et
al. 2006). To clearly distinguish ferrihydrite from
goethite by LC-EXAFS fitting, one needs EXAFS
data up to 14 k (A™"). We fitted our data to 11.5 k due
to the presence of four glitches (Comin et al. 1983) in
the spectrum between 11.9 and 12.6 k. However, we
did attempt to deglitch the spectrum followed by LC-
EXAFS fitting to 14 k. When the EXAFS spectrum
was fitted to 14 k, the fit suggested the presence of
siderite (51 mol% Fe), ferrihydrite (29 mol% Fe),
biotite (10 mol% Fe), goethite (7 mol% Fe), and
pyrite (3 mol% Fe). However, the inclusion of
goethite in the LC-EXAFS fit did not significantly
improve (i.e., 3%) the x° value. When goethite was
not included in the fit, the ferrihydrite contribution
increased to 37 mol% Fe and the other constituents
(i.e., siderite, biotite, and pyrite) contributed to a
similar extent as when the data were fitted to 11.5 k.
This, in combination with the absence of goethite in
the X-ray diffractogram (Fig. 3), indicate that goethite
was most likely not present in this sample. Overall,
these results are consistent with our XRD data and the
reported presence of ferrihydrite by Toevs et al.
(20006). Ferrihydrite is an important sorbent for many
metals and nutrients such as Zn, Pb, and phosphate
(Scheinost et al. 2001; Manceau et al. 2004; Borch et
al. 2007; Borch and Fendorf 2008). Cations (e.g., Pb,
Cd, and Cu) can bind strongly via inner-sphere
complexation to biotite (Farquhar et al. 1997).

4 Conclusions

In summary, coupling macroscopic and microscopic
analyses facilitates a better understanding of the
geochemistry of the complex CdAR system. Micron-
scale phase association of heavy metals in sediments,
until recently, could only be inferred by selected-area
electron diffractometry or a combination of electron

microscopy and elemental analysis. For the first time
with the Coeur d’Alene River sediments, to our
knowledge, both macroscopic (e.g., XRD, EXAFS)
and microfocused analyses (e.g., uXRD, uXRF) have
been applied to the study of micron-scale particles.
These analyses indicate a variety of mineral phases
including siderite, jacobsite, the oxyhydroxides ferri-
hydrite, diaspore, and manganite, and the exchange-
able clays montmorillonite, biotite, and muscovite.
These mineral phases likely contribute to the sorption
and sequestration of heavy metals in the CdAR
system. A significant quantity of Fe and Mn (hydr)
oxides was observed in this system. Metal sorption
behavior may be dominated by these (hydr)oxide
phases because these minerals have much higher
surface areas than other observed sorbing phases.
Ferrihydrite and manganite can also serve as electron
acceptors for dissimilatory metal reduction, with the
potential for reintroducing adsorbed metal into the
environment after reductive dissolution. Of the likely
toxic-metal-bearing phases identified in this study,
which include smithsonite, dundasite, coronadite,
bindheimite, stolzite, and mattheddleite, only dunda-
site. would have been detected with macroscopic
techniques (e.g., XRD). This study identifies the need
for further study of these minerals as little is known
about their solubility, toxicity, and bioavailability.
Further studies are warranted to monitor seasonal
variations, spatial changes in geochemistry, and
biogeochemical changes in this system which may
affect metal mobility and transport using the minerals
identified in this study as a framework.
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