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Environmental context. Iron-bearing particles in the ocean have attracted interest due to the role of iron as an
essential nutrient formicroscopic algae,which form the base of themarine food chain.Modern techniquesmake
it possible to analyse individual particles of iron to determine their composition, but the resulting flood of data
can be overwhelming. We show a method of simplifying the data to answer such questions as what groups of
minerals are present and whether they are different between ocean basins.

Abstract. It is a well known truism that natural materials are inhomogeneous, so analysing them on a point-by-point

basis can generate a large volume of data, from which it becomes challenging to extract understanding. In this paper, we
show an example in which particles taken from the ocean in two different regions (the Western Subarctic Pacific and
the Australian sector of the Southern Ocean, south of Tasmania) are studied by Fe K-edge micro X-ray absorption near-

edge spectroscopy (mXANES). The resulting set of data consists of 209 spectra from theWestern Subarctic Pacific and 126
from the Southern Ocean. We show the use of principal components analysis with an interactive projection visualisation
tool to reduce the complexity of the data to something manageable. TheWestern Subarctic Pacific particles were grouped

into four main populations, each of which was characterised by spectra consistent with mixtures of 1–3 minerals:
(1) Fe3þ oxyhydroxidesþFe3þ claysþ Fe2þ phyllosilicates, (2) Fe3þ clays, (3) mixed-valence phyllosilicates and
(4) magnetiteþFe3þ claysþ Fe2þ silicates, listed in order of abundance. The Southern Ocean particles break into three
clusters: (1) Fe3þ-bearing claysþ Fe3þ oxyhydroxides, (2) Fe2þ silicatesþ Fe3þ oxyhydroxides and (3) Fe3þ oxidesþ
Fe3þ-bearing claysþFe2þ silicates, in abundance order. Although there was some overlap between the two regions, this
analysis shows that the particulate Fe mineral assemblage is distinct between the Western Subarctic Pacific and
the Southern Ocean, with potential implications for the bioavailability of particulate Fe in these two iron-limited regions.

We then discuss possible advances in the methods, including automatic methods for characterising the structure of
the data.
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Introduction

The well known fact that natural materials are inhomogeneous

has helped drive the development of X-ray microprobe techni-
ques for the study of environmental, oceanographic and
geological samples. In particular, the micrometre scale has

proven to be a fruitful realm for such studies.[1,2] Until now, the
procedure for doing microprobe studies in the hard X-ray region
has been tomap the sample, then select a few spots of interest on
which to do X-ray spectroscopy. However, such a limited

number of spectra make it difficult to understand the true nature
of the sample. Howmanyminerals are present? How do samples
taken from different areas differ? Are there distinct environ-

ments for the element of interest, or a continuous range of
speciation within the sampled area?

Chemical species mapping is one method that allows for a

quick assessment of the distribution of different chemical states
of a given element in a sample. Traditionally, severalX-raymaps
(typically n# 5) are taken of the same area at energies close to an

absorption edge of that element. The shape and position in
energy of the edge depend on the chemical state of the element,

so performing maps at a set of well chosen energies yields
spatially resolved chemical speciation information, for instance

the distribution of Fe2þ v. Fe3þ.[3–5] Essentially, one gets a
tabulated micro-XANES (X-ray absorption near-edge structure)
spectrum at each pixel. Although chemical mapping is a quick

and efficient way of surveying the spatial distribution of specia-
tion for a given element, it has disadvantages because the maps
are typically done at a small number of energies, so the
information at each pixel corresponds to a XANES ‘spectrum’

taken at only a few points. Suppose one is looking for the
distributions of Fe2þ and Fe3þ. The use of traditional valence-
state mapping is tantamount to the assumption that the absorp-

tion spectra for all Fe2þ species look alike and likewise for Fe3þ,
which is not so. If one knows which species are present in the
sample by other means, then the errors resulting from this faulty

assumption may be avoided, but we often don’t have this
information. Nowadays, due to technical advances in hard
X-ray microprobes such as the Maia detector[6] and undulator

sources, it is becoming practical to take full XANES spectra at
many different spots, thus allowing an approach to statistical
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sampling in addition to characterisation of specific features at the

micrometre scale. In the soft X-ray arena, ‘stacks’ consisting of
maps taken at many energies are routinely collected. Each pixel
of such a stack represents a mXANES spectrum for that pixel.[7]

Even if one doesn’t take a spectrum at each pixel, it is still

quite possible to wind up with many more spectra than can be
understood by visual inspection or least-squares fitting of each
one. In this paper, we show such an example. Fe-bearing marine

suspended particles were filtered from the ocean at two different
locations, and the filters mapped by micro X-ray fluorescence
(mXRF). Fe K-edge mXANES spectra were taken on 209

particles from one site and 126 from the other. Fig. 1 shows
these spectra. No obvious conclusions can be drawn simply by
looking at the two sets of curves. Linear-combination fitting,

with all its ambiguities, is also not likely to be helpful if blindly
applied to all 335 spectra using a large database of standards.
Although few studies generate such numbers of spectra now, it is
clear that the new hardware becoming available will make this

circumstance more common in the future.
The reason we took all those spectra is, of course, to gain

scientific insight about the forms of particulate Fe in the ocean.

Characterisation of the chemical form of marine particulate iron
helps to address two major uncertainties in the biogeochemical
cycling of iron in the ocean: the sources of iron to the ocean and

the bioavailability of different sources of iron.
Studies using chemical species mapping techniques and soft

X-ray spectroscopy are already starting to demonstrate the

chemical and geographic diversity of particulate Fe in some
parts of the ocean.[3,8] Fe K-edge m-XANES can provide even
more detailed chemical information that will deepen our under-
standing of iron cycling in the ocean, provided we have the tools

that will help us collect and analyse this data effectively.
Specifically, we would like to know:

1. Can we explain the data in terms of a small number of types
of material?

2. How many different types of spectra are there?

3. In what way are the two sampling locations different?

In this paper, we use the example cited above to demonstrate

an approach to simplifying the dataset so that the salient features
become comprehensible. As has become standard in the soft
X-ray range,[9] we decompose the dataset using principal

components analysis (PCA) and represent each spectrum as a
point in a multi-dimensional vector space, such that the first few
components are the most significant. We then ignore the higher

(minor) components and search for clusters. In previous papers

such as Lerotic et al.,[9] the points were plotted in coordinates
corresponding to the loadings for specified components, so, for
instance, the x-axis might be the second component and the
y-axis the third. We extend this idea by applying an interactive

tool that lets the user rotate the cloud of points around chosen
axes, thus making visible separations between clusters of points
that don’t show up in the Cartesian-axes plots. By viewing the

points as one rotates them, one gets an impression of three-
dimensional structure.

Methods

Size-fractionated suspended marine particulate samples were

collected between the surface and 1000m by in-situ filtration on
a 51-mm polyester prefilter followed by quartz fibre filters
(nominal 1-mm pore size). All filters were acid leached before

use. The Western Subarctic Pacific samples were collected in
July–August 2005 in the Western Subarctic Pacific during the
VERTIGO (Vertical Transport in the Global Ocean) project at

Station K2 (478N, 1618W).[10–12] Some sinking particles col-
lected by trace-metal clean sediment traps[13] were also analysed
at the beamline; these samples were filtered onto acid-leached

polycarbonate membrane filters. Southern Ocean samples were
collected in January–February 2007 in subtropical, subantarctic
and polar frontal waters south of Tasmania during the SAZ-
SENSE (Sensitivity of the Subantarctic Zone to Environmental

Change) project.[14] All samples were misted with ultrapure
water at sea to reduce salt and dried for 12 h at 60 8C and stored
dried. Because of the sample preservation procedure employed

for these samples, any unstable Fe species would have oxidised,
so the Fe speciation presented here represents the stable, more
crystalline mineral component of the sample.

The Western Subarctic Pacific XANES spectra were from
both sediment trap (150, 300, 500m) and 1–51-mmand.51-mm
in-situ filtration samples (60–480m) from a single station.[11,13]

The Southern Ocean XANES spectra were collected on
1–51-mm in-situ filtration samples from five stations at up to
six depths in the upper 800m per station: P1 – Subantarctic-
West, P2 – Polar Front, P3 – Subantarctic-East, and Stations 23

and 24 in East Australian Current (EAC)-influenced subtropical
waters south-east of Tasmania.[14] For the purposes of the
analysis presented here, we have grouped all spectra from

samples from the Western Subarctic Pacific into ‘Group 1’
(n¼ 209) and all spectra from samples from the Southern Ocean
into ‘Group 2’ (n¼ 126).
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Fig. 1. Normalised Fe K-edge X-ray absorption near-edge spectroscopy spectra for 209 particles collected from

the Western Subarctic Pacific (Group 1) and 129 from the Southern Ocean (Group 2).
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Particulate samples on their filter substrates were directly

mounted at the beamline for mapping by mXRF and spectro-
scopy by extended mXANES. Typically, a 500� 500-mm2 map
was collected at 10 keV for each sample with an ,5-mm step

size, and,5–10 Fe-rich spots of varying intensities were chosen
randomly from the Fe Ka map for spectroscopic analysis. Fe
K-edge extended mXANES spectra were collected between
7010 and 7415 eV, with 0.5-eV steps through the Fe K-edge

region (7095–7140 eV), and at 1, 2 and 5-eV steps at higher
energies. XANES spectrawere corrected for detector dead-time,
had their pre-edges subtracted, and normalised using software

available at the beamline.[15] Energy calibration was ensured
using a reproducible glitch in the monochromator at 7263.64 eV
and the spectra shifted as necessary.

Once a set of spectra such as those described above has been
reduced to pre-edge-subtracted, post-edge-normalised form, the
work of classification can begin. The first step is to do PCA on
the set and decide howmany components to retain. Separation of

clusters may be possible with fewer components than is really
necessary to describe the full variability of the dataset. Let the
ith spectrum be denoted yi(E) with i¼ 1yn. Using PCA, we

approximate the set of spectra as:

yiðEÞ �
XM

a¼1

wialaCaðEÞ ð1Þ

whereM is the number of components retained,wia is the amount
(loading) of component a assigned to spectrum i, la is the
eigenvalue (relative importance) of componenta, andCa(E) is the

ath abstract component. The eigenvalues are sorted bymagnitude
so that the first component is the most important. The abstract
components form an orthonormal set. For XANES data with a

sufficiently long post-edge region, the first abstract component
approximates the average of all the spectra, and the loadings of
this component for all the individual spectra are all approximately

the same. We can also perform the rotation given by iterative
target factor analysis (ITFA[16]), which seeks apparent end-
members such that the loadings are all non-negative and as

different from each other as possible, in which case we have

yiðEÞ �
XM

a¼1

XiaTaðEÞ ð2Þ

in which the loadings are Xia and the components are Ta(E). IfM
is small enough, the ITFA components often look like identifi-

able XANES spectra.
If we simply make a scatterplot of, for instance, wi2Cwi1 v.

wi3Cwi1, as is typically done with STXM (Scanning Transmis-
sion X-ray Microscope) stacks, we often find a poor separation

between sets of points representing spectra from different types
of materials. By a clever choice of coordinates, we can make
these separations clear, essentially using the image-processing

capabilities of the human visual system. The rotation we use is
chosen from a restricted set that lets one look at combinations of
four weights:

xi ¼ wAi cos y1 þ wai sin y1
yi ¼ wBi cos y2 þ wbi sin y2

ð3Þ

where axes A and B may be considered as ‘view’ axes, a and b
are ‘hidden’ axes that are rotated into view and y1 and y2 are

rotation angles. A schematic of how the rotation works is shown
in Fig. 2. In the visualisation program, which is written in

LabVIEW, the rotation angles are controlled by sliders and the
axes selected by switches. The projection is shown continuously
as the parameters are changed, so that the user can select rotation

axes and angles that produce interesting views. As one changes
y1, there is a strong visual impression of the cloud of points as
a three-dimensional object rotating around a vertical axis.

Similarly, changing y2makes it appear as if the cloud of points is
rolling around a horizontal axis. However, because the set of
points exists in more than three dimensions, the choice of y1
affects the combination of loadings that are viewed as ‘into the

screen’, hence the results of changing y2.
When viewing abstract components, the weights used in

Eqn 3 are not quite the outputs of PCA. Asmentioned above, the

loading of the first component is nearly constant and a measure
of intensity in the spectrum. We therefore divide other compo-
nent loadings by it. This normalisation is not done for ITFA

components because there’s nothing special about the first one
of these.

The tool has other useful features. It allows the user to select a
point and see the corresponding spectrum, which is good for

detecting outliers and verifying that points that are close
together in projection really do correspond to similar-looking
XANES spectra. It is possible to delineate clusters either by

manual masking and selection or by k-means clustering.[17] The
memberships of clusters thus chosen may be recorded in text
files, along with the parameters used in the projection.

Results

The tool described above was applied to the Western Subarctic
Pacific group (Group 1), with results shown in Fig. 3. This is a

stereogram obtained by taking two views with y1 108 apart, with
the points coloured according to which group (in the projected
3-D space) they belong to. Outliers are in white. The projections

were done using the first six abstract PCA components. We see
four distinct clusters, coloured yellow, red, cyan and purple,
suggesting four distinct types of material.

Next, we averaged the XANES spectra for each cluster, as
shown in Fig. 4 and performed linear combination fitting with
non-negative loadings to a large database of Fe references. This
database is a revised and extended version of one used in a study

of Fe XANES classification.[18] Each cluster average fit to
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Fig. 2. Schematic of projection visualisation. In the upper half of the

figure, we imagine viewing a two-dimensional projection of a higher-

dimensional set of points with coordinate axes as shown. The bottom half

shows the definition of the projection axes and suggests the visual effect of

varying the two angles y1, y2.
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mixtures of 1–3 minerals, as identified in Table 1. As an aside,
we note that the difference between the Cluster 0 and Cluster 3
averages are subtle in the near-edge region but become more
prominent in the extended region, thus showing the value of

taking extended-range data even for XANES analysis.
The fits shown here for the cluster averages do not neces-

sarily apply to the individual members. Because the cluster does

take up a finite area in projection, it’s obvious that the individual
spectra differ from each other. Individual fits of several member
of Cluster 2, for instance, always show the presence of Fe2þ

phyllosilicates and Fe3þ-bearing clays, but also up to 25% of
various other species such as magnetite and ferrihydrite. Thus,
the fits to the cluster averages represent a simplification of the
true diversity. However, the fits represent species consistently

found in cluster members.
We tested the partitioning of spectra into clusters to see if

this clustering really reflects diversity in the spectra. Let

the normalised signal for the ith spectrun in the cth cluster
be denoted yi

c(E) at energy point E. Define the cluster
mean ycmeanðEÞ ¼ yci ðEÞ

� �
i
where . . .h ii represents a mean

over spectra, Now define the overall mean as
�yðEÞ ¼ ycmeanðEÞ

� �
c
. Finally, define a diversity measure

d ¼
X

c;E

ðycmeanðEÞ � �yðEÞÞ2=
X

c;E

�yðEÞ2 ð4Þ

which is, essentially, a normalised variance among the different
clusters. Now, do this operation for the actual selected clusters
and for ‘clusters’ made of randomly chosen spectra, such that

each ‘cluster’ has the same number of spectra in it as the real
ones. Spectra are chosen for ‘cluster’ membership without
replacement. After 105 trials, not once did the diversity measure

for the random cluster equal or exceed that for the real ones. This
result suggests that the clustering organises the spectra, which
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Fig. 4. Averaged X-ray absorption near-edge spectroscopy spectra for the clusters for Group 1 (Western

Subarctic Pacific), shown in colours corresponding to Fig. 3. The right-hand graph is a zoom-in on the near edge

energy region of the data on the left.

Fig. 3. Stereogram showing projections for Group 1 (Western Subarctic Pacific). The clusters are colour-coded

red (0), yellow (1), cyan (2), purple (3) and white (outliers). The two views are taken with values of y1 differing by
108. Clusters were defined by manual selection and masking.
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differ significantly from each other, into different groups, which
random allocation would not do.

Nowwe can ask if the SouthernOcean group (Group 2) looks

the same as the Western Subarctic Pacific. One way to do this is
to project the data from the Southern Ocean group onto the same
basis set as the Western Subarctic Pacific group, essentially
fitting the Southern Ocean group to sums of the first few abstract

components found in the Western Subarctic Pacific group. By
doing so, we can plot the two groups together and see if the
clouds of points occupy the same space. In Fig. 5, we show a set

of three rotations in which Western Subarctic Pacific points are
white and Southern Ocean points are red. The red points occupy
a thin slab in the projected 3-D space, whereas the white points

fill the space. This shows that the Southern Ocean differs from
the Western Subarctic Pacific, but does not clearly show how.
We then applied the visualisation tool to the Southern Ocean
group independently from the Western Subarctic Pacific group

and found that it generates three clusters plus 5% of outliers,

as shown in Fig. 6, in which the outliers are the blue points.
These clusters were identified using k-means clustering[17]

rather than manual selection. Manual selection is an option

because k-means doesn’t always yield good separation. The
averaged spectra from each of these clusters from the Southern
Ocean are more similar to each other than those of the Western
Subarctic Pacific group. One Southern Ocean cluster fits to a

mix of Fe2þ silicates and Fe3þ-bearing oxyhydroxides. The
second cluster fits to Fe3þ clays plus oxyhydroxides and has a
spectrum quite similar to that of cluster 1 in the Western

Subarctic Pacific (labelled in yellow), and the third fits to
hematite and smaller amounts of Fe3þ clays and Fe2þ silicates
(Table 1). The exact proportions depend on which species one

takes in the fits. Two of the three clusters have averages that
don’t fit well to sums of the cluster averages from the Western
Subarctic Pacific group, which shows again that the Southern
Ocean group is outside the variability of the Western Subarctic

Pacific group, except possibly for outliers.

Table 1. Fit results for cluster averages in Group 1 (Western Subarctic Pacific), shown in Fig. 4, and Group 2 (Southern Ocean), shown in Fig. 5

Outliers (n¼ 12 for group 1; n¼ 6 for group 2) are not listed. Species are aggregated into chemically similar groups. Named minerals (superscripts) are ones

that appeared in the fits as the sole entries in their class. The Fe2þ silicate group contains hornblende and augite. The Fe2þ phyllosilicate group contains biotite

and chlorite. The Fe3þ clay group contains Imt-1, ISCZ-1, KGa-1b and NAu-1 (Clay Minerals Society designations). The Fe3þ oxyhydroxide group contains

2-line and 6-line ferrihydrite and disordered biogenic oxide. Otherminerals were considered in the fits but the ones listed here are what appeared in the best fits.

Sum-square error NSS is given by S(yi� yi
fit)2CSyi

2 where yi is the signal value at the ith point. The error bars, estimated by the difference in amounts of

species in fits using alternative combinations of minerals, are ,10%

Cluster Number of spectra Fe2þ phyllosilicate (%) Fe2þ silicate (%) Fe3þ oxyhydroxide (%) Fe oxide (%) Fe3þ clays (%) NSS (�10�5)

Group 1. Western Subarctic Pacific

1/0 (red) 132 18 44 38 1.2

1/1 (yellow) 16 5 95 3.0

1/2 (cyan) 19 71 31 4.1

1/3 (purple) 31 27A 27 54B 2.0

Group 2. Southern Ocean

2/0 (white) 42 26C 74 6.3

2/1 (red) 55 27 74 2.0

2/2 (yellow) 21 13A 57D 29 4.9

AAugite.
BMagnetite.
CHornblende.
DHematite.

1 2

Fig. 5. Spectra of Group 2 (red, Southern Ocean) projected onto the space defined by the PCA of Group 1 (white,

Western Subarctic Pacific). The three panels differ by increments of 108 in y1, to give an impression of how the

Southern Ocean cloud of points relates to the Western Subarctic Pacific points.
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Discussion

As demonstrated above, the visualisation method is an effective
way to identify clusters of similar datawithin a large and complex

dataset so that the samples can be described in terms of a small
number of types of material. Consideration of the linear combi-
nation fits of many tens to hundreds of individual spectra is an
intractable problem because fits are not unique, and there is no

easy way to get a sense of the overall variability in chemical
speciation. The much-reduced set of variability that results from
the visualisation method greatly facilitates comparisons between

large datasets. In the examples presented here, the 209 spectra
from the Western Subarctic Pacific were reduced to four main
clusters (plus outliers), and the 126 spectra from the Southern

Ocean were reduced to three main clusters (plus outliers).
Both regions contained significant amounts of Fe3þ

oxyhydroxides and Fe3þ-containing clays (Table 1), pointing
to the ubiquity of these Fe mineral groups in marine particulate

iron regardless of ocean basin. In contrast, three of the four
clusters in the Western Subarctic Pacific contained Fe2þ-
containing phyllosilicates such as biotite or chlorite, and the

fourth cluster contained significant magnetite. Neither of these
mineral groups was present in the Southern Ocean clusters,
indicating that these mineral groups are specific to the Western

Subarctic Pacific and likely indicate the influence of the volca-
nic margin source of iron to that region.[3,12] Likewise, hematite
was found in the Southern Ocean samples but not in theWestern

Subarctic Pacific. Looking more closely at the Southern Ocean
group samples, we find that certain species clusters are more
prevalent at some stations than others (Fig. 7). Because hematite
is a known, although minor, component of mineral dust,[19]

one might expect the hematite observed in our samples to derive
fromAustralian dust. The observed higher relative abundance of
the hematite-containing cluster 2 at the Polar Frontal Zone

station P2 compared to the other, more northerly Subantarctic
and Subtropical stations is at odds with the expected gradient
from dust deposition, however, and suggests an as yet unidenti-

fied source of hematite to the Station P2 – Polar Front samples.
SouthernOceanCluster 1, whichwas composed entirely of Fe3þ

clays and oxyhydroxides (Table 1), was the dominant species

cluster at EAC-influenced subtropical stations 23 and 24. Of the
three process stations, only station P3 (Subantarctic-east) was

strongly influenced by this species cluster (56% of spectra),

suggesting that P3 may be the most influenced by EAC subtrop-
ical waters. Indeed, this is consistent with the conclusion derived
from independent hydrographic and other trace metal data.[14]

These examples show the use of Fe mineralogy as determined
by mXANES analysis in tagging the source of Fe to the ocean.

In the example above, we found that some clusters of
Fe species dominated certain stations and not others. Further-

more, there was no clear trend in species clusters with depth in
the water column, supporting the idea that lateral differences
in Fe speciation are generally stronger than vertical ones.

All particulate iron bioavailability studies to date have been
conducted on iron oxhydroxides and iron oxides.[20,21] This
XANES analysis shows that iron oxyhydroxides and oxides are

only part of the particulate iron in the ocean. Journet et al.[22] and
Schroth et al.[23] have both shown that Fe-containing silicates
(both clays and primary minerals) from putative atmospheric

dust sources can have higher solubility than iron oxides. The
abundance of clays and primary and secondary Fe-bearing
silicates that we see in the water column begs for the examina-
tion of the bioavailability of these particulate iron species.

Although this work was done using spectra collected on
selected points, the use of fast detectors on high-flux microp-
robes will make it possible to collect manymore spectra without

the need for manual selection of points. When thousands of
spectra become available on each sample, some means of
visualising the structure of the data will become even more

important than it is now. The present work is a start towards
developing such methods.

There are several possible extensions and modifications of
the basic idea of projection and dimensional reduction. For

instance, instead of using model-free PCA to provide coordi-
nates, it may be possible and sensible in some cases to do least-
squares fits with non-negative coefficients on each reference

spectrum. In that case, it may be necessary to add together the
weights of references that are ‘similar’.

There is a class of methods called projection pursuit,[24] in

which an automatic procedure is used to look for projections that
are ‘interesting’ in some sense. For instance, a common criterion
is that the distribution in projection should be as non-Gaussian as

possible. Such an automated tool may be useful for finding

Fig. 6. Stereogram of Group 2 (Southern Ocean) spectra, analysed independently of Group 1 (Western Subarctic

Pacific), showing clusters 0 (white), 1 (red) and 2 (yellow) as well as outliers (blue). Clusters were defined by

k-means selection.
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combinations of coordinates not easily discovered by manual
exploration.

Another class of methods starts by connecting together near-
neighbour spectra into a graph (in the mathematical sense) and
attempting to infer the underlying geometry of that graph. Here,
‘near-neighbour’ refers to distances between spectra computed as

norms of differences between them. In spectral clustering,[25] this
graph is manipulated to label each spectrum with a set of
coordinates in a lower-dimensional space, much as PCA does,

but without the requirement of a linear mapping between spectra
and this new space. Automatic clustering methods are then used
for classification, which could, in principle, be augmented with a

visualisation tool such as ours. In another approach, the network
of connections between spectra is fitted to the geometry of an
assumed lower-dimensional manifold so that the derived points

on thismanifold bear the same relationship to nearby points as the
corresponding spectra do to their neighbours, for example by
requiring that the shortest distance between any two spectra
match the geodesic distances between the corresponding points

in the manifold.[26,27] Such sophisticated methods, perhaps com-
binedwith interactive visualisation tools,may be theway forward
when the number of spectra goes into the hundreds or thousands.

We have demonstrated an approach to making the transition
from acquiring spectra on inhomogeneous samples to acquiring
a physical understanding of them. In the example shown here,

we showed that data from hundreds of spectra could be simpli-
fied and some of the differences between iron-bearing particles
from two parts of the ocean teased out. The combination of
computation plus human visual evaluation results in a powerful

tool for data analysis.

Supplementary material

An executable file of the classification program and a short
‘how-to’ guide to it are available for download from the journal,
as is a copy of the FeXANES database as used in this paper. This
database does not include several species, such as Fe carbides, as

they were not considered plausible possibilities for the present
project.
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