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al. 2008). In this configuration, each interlayer Mn shares two 
corners with two adjacent Mnlayer octahedra. In addition, some 
external Mn3+ may be located in the layer plane, sharing two 
edges with two adjacent Mnlayer (DEMn complex—Fig. 14 in 
Takahashi et al. 2007). If present, DEMn complexes are minor 
because the layer charge (i.e., 4z in formula 1) is close in value 
to the total charge of Mninterlayer (i.e., 3y; Table 2).

Comparison with structure models of vernadite
The structure model proposed for the phyllomanganates pro-

duced by the fungal strains does not differ fundamentally from 
those proposed previously for biogenic and chemical vernadites 
(Jürgensen et al. 2004; Villalobos et al. 2006; Lanson et al. 2008; 
Grangeon et al. 2008; Bargar et al. 2009), and well-crystallized 
hexagonal birnessites (Manceau et al. 1997; Lanson et al. 2000, 
2002b; Drits et al. 2002). The manganese layer contains sparse 
Mn3+, if any, since its symmetry is hexagonal. As an exception to 
this generality, orthogonal layer symmetry was observed in the 
Mn oxide produced by Bacillus sp. strain SG-1, as a result of the 
abundance and ordering of Mn3+ cations (Drits et al. 1997, 2007; 
Webb et al. 2005; Gaillot et al. 2007). The layer charge deficit 
resulting from vacant octahedral sites is balanced essentially 
by interlayer Mn3+ when the medium is poor in trace metals; 
otherwise divalent metals, such as Pb, Co, Cu, Ni, and Zn, can 
compete positively against Mn3+ (McKenzie 1989; Manceau et 
al. 1997, 2002, 2007a, 2007b; Lanson et al. 2002a; Tani et al. 
2004b; Tebo et al. 2004; Peacock and Sherman 2007; Peacock 
2009). The charge on layer edges, coming from broken bonds, 
contributes tangibly to the ion sorption capacity when the layer 
dimension is small. With a CSD diameter of ~10 nm, the fungal 
Mn oxides are the second smallest vernadite particules as yet 
known after those identified in grass roots, which had a CSD 
diameter of 6–7 nm (Lanson et al. 2008). For comparison, the 
biogenic vernadite produced by Pseudomonas putida had a mean 
diameter of 17 nm (Villalobos et al. 2006).

The total particle charge obtained by summing all interlayer 
species (Mn, Mg, and K) is ~0.86–1.22 v.u. per layer octa-
hedron, a value almost as high as the one obtained for plant 
vernadite (1.58 v.u. from Lanson et al. 2008), and ~1.2–1.6× 
higher than for bacterial vernadite (~0.74 v.u. from Villalobos 
et al. 2006). This high surface charge and the predominance 
of Mn3+ in the interlayer may explain the superior oxidizing 
properties of this bio-mineral, in particular for the in situ 
degradation of organic and inorganic compounds (Cheney et 
al. 1996; Nasser et al. 2000; Chorover and Amistadi 2001; 
Villatoro-Monzón et al. 2003; Pizzigallo et al. 2004; Tani et 
al. 2004a; De Schamphelaire et al. 2007).
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Structure models are described in Tables 1 and 2. The cell contribution (Fig. 1) was subtracted from the experimental data.
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on fungal cells). b) Evolution of the fit quality (solid line) and of the proportions of Mn4+ (light grey bars) and Mn2+ (black bars) as a function of the fixed Mn3+ content 

(open bars). X-ray diffraction patterns of fungal Mn oxides compared with Ni-sorbed δ-MnO2 (Grangeon et al. 2008). NibBi2-7 and NidBi177-7 contain respectively 0.1 

and 0.2 “heavy” interlayer cations (Ni and Mn) at TC position. Solid arrows point out the intensity minimum appearing at ~47 °2θ when the amount of interlayer Me 

cations at TC position increases from 0.1 to 0.2 per layer octahedron. When this number exceeds 0.2, a shoulder appears at ~42 °2θ (dashed arrow).
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Figure SI4. Partial EXAFS spectra Fourier-filtered over the 0.8-3.3 Å R + ΔR interval (black) with the optimum single-scattering simulations (red). R is the sum of the 

residuals, normalized to the sum of the data values.


